Pierre-Olivier Vidalain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8656673/publications.pdf Version: 2024-02-01

		71061	60583
98	7,060	41	81
papers	citations	h-index	g-index
112	112	112	11999
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Domain 2 of Hepatitis C Virus Protein NS5A Activates Glucokinase and Induces Lipogenesis in Hepatocytes. International Journal of Molecular Sciences, 2022, 23, 919.	1.8	7
2	RACK1 Associates with RNA-Binding Proteins Vigilin and SERBP1 to Facilitate Dengue Virus Replication. Journal of Virology, 2022, , e0196221.	1.5	13
3	Characterization and functional interrogation of the SARS-CoV-2 RNA interactome. Cell Reports, 2022, 39, 110744.	2.9	30
4	Measuring the subcellular compartmentalization of viral infections by protein complementation assay. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	2
5	Identification of host factors binding to dengue and Zika virus subgenomic RNA by efficient yeast three-hybrid screens of the human ORFeome. RNA Biology, 2021, 18, 732-744.	1.5	7
6	Reprogramming of Central Carbon Metabolism in Myeloid Cells upon Innate Immune Receptor Stimulation. Immuno, 2021, 1, 1-14.	0.6	2
7	Instability of the NS1 Glycoprotein from La Reunion 2018 Dengue 2 Virus (Cosmopolitan-1 Genotype) in Huh7 Cells Is Due to Lysine Residues on Positions 272 and 324. International Journal of Molecular Sciences, 2021, 22, 1951.	1.8	4
8	A hexokinase isoenzyme switch in human liver cancer cells promotes lipogenesis and enhances innate immunity. Communications Biology, 2021, 4, 217.	2.0	21
9	High Frequency of Viral Co-Detections in Acute Bronchiolitis. Viruses, 2021, 13, 990.	1.5	11
10	Depletion of TAX1BP1 Amplifies Innate Immune Responses during Respiratory Syncytial Virus Infection. Journal of Virology, 2021, 95, e0091221.	1.5	6
11	A Bioluminescent 3CLPro Activity Assay to Monitor SARS-CoV-2 Replication and Identify Inhibitors. Viruses, 2021, 13, 1814.	1.5	12
12	Sequential actions of EOMES and T-BET promote stepwise maturation of natural killer cells. Nature Communications, 2021, 12, 5446.	5.8	38
13	Cerpegin-derived furo[3,4-c]pyridine-3,4(1H,5H)-diones enhance cellular response to interferons by de novo pyrimidine biosynthesis inhibition. European Journal of Medicinal Chemistry, 2020, 186, 111855.	2.6	13
14	E3 Ligase ITCH Interacts with the Z Matrix Protein of Lassa and Mopeia Viruses and Is Required for the Release of Infectious Particles. Viruses, 2020, 12, 49.	1.5	12
15	Identification of antiviral compounds against equid herpesvirus-1 using real-time cell assay screening: Efficacy of decitabine and valganciclovir alone or in combination. Antiviral Research, 2020, 183, 104931.	1.9	6
16	The current landscape of coronavirus-host protein–protein interactions. Journal of Translational Medicine, 2020, 18, 319.	1.8	66
17	Screening of potential antiviral molecules against equid herpesvirus-1 using cellular impedance measurement: Dataset of 2,891 compounds Data in Brief, 2020, 33, 106492.	0.5	3
18	Replication of Equine arteritis virus is efficiently suppressed by purine and pyrimidine biosynthesis inhibitors. Scientific Reports, 2020, 10, 10100.	1.6	5

PIERRE-OLIVIER VIDALAIN

#	Article	IF	CITATIONS
19	FHL1 is a key player of chikungunya virus tropism and pathogenesis. Comptes Rendus - Biologies, 2020, 343, 79-89.	0.1	2
20	Maximizing binary interactome mapping with a minimal number of assays. Nature Communications, 2019, 10, 3907.	5.8	57
21	FHL1 is a major host factor for chikungunya virus infection. Nature, 2019, 574, 259-263.	13.7	49
22	Destabilization of the human RED–SMU1 splicing complex as a basis for host-directed antiinfluenza strategy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10968-10977.	3.3	7
23	Autophagy Promotes Infectious Particle Production of Mopeia and Lassa Viruses. Viruses, 2019, 11, 293.	1.5	12
24	Evaluation of the Antiviral Activity of Sephin1 Treatment and Its Consequences on eIF2α Phosphorylation in Response to Viral Infections. Frontiers in Immunology, 2019, 10, 134.	2.2	16
25	Identification of Primary Natural Killer Cell Modulators by Chemical Library Screening with a Luciferase-Based Functional Assay. SLAS Discovery, 2019, 24, 25-37.	1.4	10
26	Screening and evaluation of antiviral compounds against Equid alpha-herpesviruses using an impedance-based cellular assay. Virology, 2019, 526, 105-116.	1.1	18
27	Chemical pollution and innate antiviral immunity: Dangerous Liaisons ?. Virologie, 2018, 22, 1-13.	0.1	Ο
28	Respiratory Syncytial Virus Infects Regulatory B Cells in Human Neonates via Chemokine Receptor CX3CR1 and Promotes Lung Disease Severity. Immunity, 2017, 46, 301-314.	6.6	102
29	Original Chemical Series of Pyrimidine Biosynthesis Inhibitors That Boost the Antiviral Interferon Response. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	21
30	Identification of a small molecule that primes the type I interferon response to cytosolic DNA. Scientific Reports, 2017, 7, 2561.	1.6	15
31	A Clobal Interactome Map of the Dengue Virus NS1 Identifies Virus Restriction and Dependency Host Factors. Cell Reports, 2017, 21, 3900-3913.	2.9	90
32	Checkpoint kinase 1 inhibition sensitises transformed cells to dihydroorotate dehydrogenase inhibition. Oncotarget, 2017, 8, 95206-95222.	0.8	14
33	An efficient method for gene silencing in human primary plasmacytoid dendritic cells: silencing of the TLR7/IRF-7 pathway as a proof of concept. Scientific Reports, 2016, 6, 29891.	1.6	23
34	Respiratory syncytial virus infection in macaques is not suppressed by intranasal sprays of pyrimidine biosynthesis inhibitors. Antiviral Research, 2016, 125, 58-62.	1.9	16
35	The CREB3-Herp signalling module limits the cytosolic calcium concentration increase and apoptosis induced by poliovirus. Journal of General Virology, 2016, 97, 2194-2200.	1.3	8
36	Viral Polymerase-Helicase Complexes Regulate Replication Fidelity To Overcome Intracellular Nucleotide Depletion. Journal of Virology, 2015, 89, 11233-11244.	1.5	36

#	Article	IF	CITATIONS
37	Original 2-(3-Alkoxy-1 <i>H</i> -pyrazol-1-yl)pyrimidine Derivatives as Inhibitors of Human Dihydroorotate Dehydrogenase (DHODH). Journal of Medicinal Chemistry, 2015, 58, 860-877.	2.9	41
38	Microtubule-associated Proteins 1 (MAP1) Promote Human Immunodeficiency Virus Type I (HIV-1) Intracytoplasmic Routing to the Nucleus. Journal of Biological Chemistry, 2015, 290, 4631-4646.	1.6	65
39	Original 2-(3-Alkoxy-1 <i>H</i> -pyrazol-1-yl)azines Inhibitors of Human Dihydroorotate Dehydrogenase (DHODH). Journal of Medicinal Chemistry, 2015, 58, 5579-5598.	2.9	33
40	Evidence for an intranasal immune response to human respiratory syncytial virus infection in cynomolgus macaques. Journal of General Virology, 2015, 96, 782-792.	1.3	8
41	A Field-Proven Yeast Two-Hybrid Protocol Used to Identify Coronavirus–Host Protein–Protein Interactions. Methods in Molecular Biology, 2015, 1282, 213-229.	0.4	15
42	Recruitment of RED-SMU1 Complex by Influenza A Virus RNA Polymerase to Control Viral mRNA Splicing. PLoS Pathogens, 2014, 10, e1004164.	2.1	43
43	Patchwork structure-function analysis of the Sendai virus matrix protein. Virology, 2014, 464-465, 330-340.	1.1	1
44	High-throughput Screening for Broad-spectrum Chemical Inhibitors of RNA Viruses. Journal of Visualized Experiments, 2014, , .	0.2	12
45	The cellular protein TIP47 restricts Respirovirus multiplication leading to decreased virus particle production. Virus Research, 2013, 173, 354-363.	1.1	2
46	On Dihydroorotate Dehydrogenases and Their Inhibitors and Uses. Journal of Medicinal Chemistry, 2013, 56, 3148-3167.	2.9	175
47	Identification of RNA partners of viral proteins in infected cells. RNA Biology, 2013, 10, 943-956.	1.5	13
48	Speciesâ€ s pecific impact of the autophagy machinery on Chikungunya virus infection. EMBO Reports, 2013, 14, 534-544.	2.0	121
49	Inhibition of Pyrimidine Biosynthesis Pathway Suppresses Viral Growth through Innate Immunity. PLoS Pathogens, 2013, 9, e1003678.	2.1	137
50	NS3 of Bluetongue Virus Interferes with the Induction of Type I Interferon. Journal of Virology, 2013, 87, 8241-8246.	1.5	57
51	A Phenotypic Assay to Identify Chikungunya Virus Inhibitors Targeting the Nonstructural Protein nsP2. Journal of Biomolecular Screening, 2013, 18, 172-179.	2.6	30
52	The Golgi Protein ACBD3, an Interactor for Poliovirus Protein 3A, Modulates Poliovirus Replication. Journal of Virology, 2013, 87, 11031-11046.	1.5	46
53	The V Protein of Tioman Virus Is Incapable of Blocking Type I Interferon Signaling in Human Cells. PLoS ONE, 2013, 8, e53881.	1.1	21
54	RelAp43, a Member of the NF-κB Family Involved in Innate Immune Response against Lyssavirus Infection. PLoS Pathogens, 2012, 8, e1003060.	2.1	32

#	Article	IF	CITATIONS
55	Mapping of Chikungunya Virus Interactions with Host Proteins Identified nsP2 as a Highly Connected Viral Component. Journal of Virology, 2012, 86, 3121-3134.	1.5	98
56	A Human Coronavirus Responsible for the Common Cold Massively Kills Dendritic Cells but Not Monocytes. Journal of Virology, 2012, 86, 7577-7587.	1.5	117
57	Human Tribbles 3 Protects Nuclear DNA from Cytidine Deamination by APOBEC3A. Journal of Biological Chemistry, 2012, 287, 39182-39192.	1.6	55
58	Comparative analysis of virus–host interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase. Methods, 2012, 58, 349-359.	1.9	59
59	Résistance des Paramyxoviridae aux interférons de type lÂ: mécanismes d'échappement et interactions virus-hÃ′te. Virologie, 2012, 16, 286-298.	0.1	0
60	Benchmarking a luciferase complementation assay for detecting protein complexes. Nature Methods, 2011, 8, 990-992.	9.0	141
61	Identification of a Functional, CRM-1-Dependent Nuclear Export Signal in Hepatitis C Virus Core Protein. PLoS ONE, 2011, 6, e25854.	1.1	28
62	The interaction of flavivirus M protein with light chain Tctex-1 of human dynein plays a role in late stages of virus replication. Virology, 2011, 417, 369-378.	1.1	29
63	Proteomic Analysis of Virus-Host Interactions in an Infectious Context Using Recombinant Viruses. Molecular and Cellular Proteomics, 2011, 10, M110.007443.	2.5	45
64	Generation and Comprehensive Analysis of an Influenza Virus Polymerase Cellular Interaction Network. Journal of Virology, 2011, 85, 13010-13018.	1.5	69
65	IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network. PLoS Pathogens, 2011, 7, e1002422.	2.1	173
66	Virus-host protein interactions in RNA viruses. Microbes and Infection, 2010, 12, 1134-1143.	1.0	33
67	Structure of the Nucleoprotein Binding Domain of Mokola Virus Phosphoprotein. Journal of Virology, 2010, 84, 1089-1096.	1.5	27
68	ViralORFeome: an integrated database to generate a versatile collection of viral ORFs. Nucleic Acids Research, 2010, 38, D371-D378.	6.5	38
69	TACC3-TSC2 maintains nuclear envelope structure and controls cell division. Cell Cycle, 2010, 9, 1143-1155.	1.3	46
70	Polo-like Kinase 1 (PLK1) Regulates Interferon (IFN) Induction by MAVS. Journal of Biological Chemistry, 2009, 284, 21797-21809.	1.6	81
71	Differential Regulation of Type I Interferon and Epidermal Growth Factor Pathways by a Human Respirovirus Virulence Factor. PLoS Pathogens, 2009, 5, e1000587.	2.1	17
72	NRP/Optineurin Cooperates with TAX1BP1 to Potentiate the Activation of NF-κB by Human T-Lymphotropic Virus Type 1 Tax Protein. PLoS Pathogens, 2009, 5, e1000521.	2.1	71

PIERRE-OLIVIER VIDALAIN

#	Article	IF	CITATIONS
73	pISTil: a pipeline for yeast two-hybrid Interaction Sequence Tags identification and analysis. BMC Research Notes, 2009, 2, 220.	0.6	11
74	Inhibition of IFN-α/β signaling by two discrete peptides within measles virus V protein that specifically bind STAT1 and STAT2. Virology, 2009, 383, 112-120.	1.1	67
75	'Edgetic' perturbation of a C. elegans BCL2 ortholog. Nature Methods, 2009, 6, 843-849.	9.0	71
76	Autophagy Induction by the Pathogen Receptor CD46. Cell Host and Microbe, 2009, 6, 354-366.	5.1	227
77	Study of Human RIG-I Polymorphisms Identifies Two Variants with an Opposite Impact on the Antiviral Immune Response. PLoS ONE, 2009, 4, e7582.	1.1	48
78	Hepatitis C virus infection protein network. Molecular Systems Biology, 2008, 4, 230.	3.2	340
79	Inhibition of Chikungunya Virus Infection in Cultured Human Muscle Cells by Furin Inhibitors. Journal of Biological Chemistry, 2008, 283, 21899-21908.	1.6	114
80	Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-α/β signaling. Virology, 2007, 368, 351-362.	1.1	118
81	C. elegans GLA-3 is a novel component of the MAP kinase MPK-1 signaling pathway required for germ cell survival. Genes and Development, 2006, 20, 2279-2292.	2.7	53
82	On the TRAIL of HIV-induced immunosuppression. Blood, 2005, 105, 2241-2241.	0.6	1
83	Human ORFeome Version 1.1: A Platform for Reverse Proteomics. Genome Research, 2004, 14, 2128-2135.	2.4	208
84	HIV Type 1-Infected Dendritic Cells Induce Apoptotic Death in Infected and Uninfected Primary CD4 T Lymphocytes. AIDS Research and Human Retroviruses, 2004, 20, 175-182.	0.5	80
85	A Map of the Interactome Network of the Metazoan C. elegans. Science, 2004, 303, 540-543.	6.0	1,587
86	Increasing specificity in high-throughput yeast two-hybrid experiments. Methods, 2004, 32, 363-370.	1.9	135
87	Systematic Interactome Mapping and Genetic Perturbation Analysis of a C. elegans TGF-Î ² Signaling Network. Molecular Cell, 2004, 13, 469-482.	4.5	136
88	Measles Virus (MV) Nucleoprotein Binds to a Novel Cell Surface Receptor Distinct from Fcl ³ RII via Its C-Terminal Domain: Role in MV-Induced Immunosuppression. Journal of Virology, 2003, 77, 11332-11346.	1.5	81
89	Measles Virus and Dendritic Cell Functions: How Specific Response Cohabits with Immunosuppression. Current Topics in Microbiology and Immunology, 2003, 276, 103-123.	0.7	48
90	Interferons Mediate Terminal Differentiation of Human Cortical Thymic Epithelial Cells. Journal of Virology, 2002, 76, 6415-6424.	1.5	32

PIERRE-OLIVIER VIDALAIN

#	Article	IF	CITATIONS
91	Measle Virus-Infected Dendritic Cells Develop Immunosuppressive and Cytotoxic Activities. Immunobiology, 2001, 204, 629-638.	0.8	31
92	Cytotoxic Activity of Human Dendritic Cells Is Differentially Regulated by Double-Stranded RNA and CD40 Ligand. Journal of Immunology, 2001, 167, 3765-3772.	0.4	62
93	Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Therapy, 2000, 7, 1613-1623.	2.3	204
94	CD40 signaling in human dendritic cells is initiated within membrane rafts. EMBO Journal, 2000, 19, 3304-3313.	3.5	175
95	Measles Virus Induces Abnormal Differentiation of CD40 Ligand-Activated Human Dendritic Cells. Journal of Immunology, 2000, 164, 1753-1760.	0.4	159
96	Measles Virus Induces Functional TRAIL Production by Human Dendritic Cells. Journal of Virology, 2000, 74, 556-559.	1.5	175
97	Consequences of Fas-Mediated Human Dendritic Cell Apoptosis Induced by Measles Virus. Journal of Virology, 2000, 74, 4387-4393.	1.5	116
98	Cloning and Characterization of Murine Thyroglobulin cDNA. Clinical Immunology and Immunopathology, 1997, 85, 221-226.	2.1	36