
Anke Krueger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8656550/publications.pdf Version: 2024-02-01

ANKE KDUECED

#	Article	IF	CITATIONS
1	Ultrasmall Nanodiamonds: Perspectives and Questions. ACS Nano, 2022, 16, 8513-8524.	14.6	19
2	Pyreneâ€Based "Turnâ€Off―Probe with Broad Detection Range for Cu ²⁺ , Pb ²⁺ an Hg ²⁺ lons. Chemistry - A European Journal, 2021, 27, 8118-8126.	nd _{3.3}	22
3	Threshold Photoelectron Spectrum of Cyclobutadiene: Comparison with Time-Dependent Wavepacket Simulations. Journal of Physical Chemistry Letters, 2021, 12, 6901-6906.	4.6	8
4	The influence of differently functionalized nanodiamonds on proliferation, apoptosis and EMT/MET phenomena in 2D and 3D tumor cell cultures. Journal of Materials Chemistry B, 2021, 9, 9395-9405.	5.8	3
5	Highly sensitive and reproducible quantification of oxygenated surface groups on carbon nanomaterials. Carbon, 2020, 163, 56-62.	10.3	24
6	Zwitterionâ€Functionalized Detonation Nanodiamond with Superior Protein Repulsion and Colloidal Stability in Physiological Media. Small, 2019, 15, e1901551.	10.0	26
7	Efficient surface functionalization of detonation nanodiamond using ozone under ambient conditions. Nanoscale, 2019, 11, 8012-8019.	5.6	25
8	Pentadiynylidene and Its Methyl-Substituted Derivates: Threshold Photoelectron Spectroscopy of R ₁ -C ₅ -R ₂ Triplet Carbon Chains. Journal of Physical Chemistry A, 2019, 123, 2008-2017.	2.5	18
9	Self-Assembly and Electronic Structure of Tribenzotriquinacenes on Ag(111). Journal of Physical Chemistry C, 2019, 123, 5469-5478.	3.1	6
10	<i>In vitro</i> cytotoxicity assessment of nanodiamond particles and their osteogenic potential. Journal of Biomedical Materials Research - Part A, 2018, 106, 1697-1707.	4.0	18
11	Strongly inhomogeneous distribution of spectral properties of silicon-vacancy color centers in nanodiamonds. New Journal of Physics, 2018, 20, 115002.	2.9	52
12	Intrinsically ³² P‣abeled Diamond Nanoparticles for In Vivo Imaging and Quantification of Their Biodistribution in Chicken Embryos. Advanced Functional Materials, 2018, 28, 1802873.	14.9	16
13	Combining nanostructuration with boron doping to alter sub band gap acceptor states in diamond materials. Journal of Materials Chemistry A, 2018, 6, 16645-16654.	10.3	14
14	A Copolymer Scaffold Functionalized with Nanodiamond Particles Enhances Osteogenic Metabolic Activity and Bone Regeneration. Macromolecular Bioscience, 2017, 17, 1600427.	4.1	32
15	Functionalization of bone implants with nanodiamond particles and angiopoietin-1 to improve vascularization and bone regeneration. Journal of Materials Chemistry B, 2017, 5, 6629-6636.	5.8	31
16	Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes. Biomaterials, 2016, 95, 11-21.	11.4	10
17	In Vivo Host Response and Degradation of Copolymer Scaffolds Functionalized with Nanodiamonds and Bone Morphogenetic Protein 2. Advanced Healthcare Materials, 2016, 5, 730-742.	7.6	33
18	Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 823-833.	3.3	19

Anke Krueger

#	Article	IF	CITATIONS
19	On the absolute photoionization cross section and dissociative photoionization of cyclopropenylidene. Physical Chemistry Chemical Physics, 2016, 18, 9240-9247.	2.8	20
20	Thioureaâ€Bridged Nanodiamond Glycoconjugates as Inhibitors of Bacterial Adhesion. European Journal of Organic Chemistry, 2015, 2015, 5519-5525.	2.4	28
21	Disaggregation and Anionic Activation of Nanodiamonds Mediated by Sodium Hydride—A New Route to Functional Aliphatic Polyesterâ€Based Nanodiamond Materials. Particle and Particle Systems Characterization, 2015, 32, 35-42.	2.3	14
22	Reinforced Degradable Biocomposite by Homogenously Distributed Functionalized Nanodiamond Particles. Macromolecular Materials and Engineering, 2015, 300, 436-447.	3.6	21
23	Carbon-based cores with polyglycerol shells – the importance of core flexibility for encapsulation of hydrophobic guests. Journal of Materials Chemistry B, 2015, 3, 719-722.	5.8	15
24	Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. Journal of Controlled Release, 2015, 197, 148-157.	9.9	102
25	Synthesis of nanodiamond derivatives carrying amino functions and quantification by a modified Kaiser test. Beilstein Journal of Organic Chemistry, 2014, 10, 2729-2737.	2.2	46
26	Toward Deep Blue Nano Hope Diamonds: Heavily Boron-Doped Diamond Nanoparticles. ACS Nano, 2014, 8, 5757-5764.	14.6	80
27	Biological Effects of Functionalizing Copolymer Scaffolds with Nanodiamond Particles. Tissue Engineering - Part A, 2013, 19, 1783-1791.	3.1	50
28	Ortho-methylated tribenzotriquinacenes—paving the way to curved carbon networks. Chemical Communications, 2012, 48, 1502-1504.	4.1	42
29	Saccharideâ€Modified Nanodiamond Conjugates for the Efficient Detection and Removal of Pathogenic Bacteria. Chemistry - A European Journal, 2012, 18, 6485-6492.	3.3	91
30	Surface Modification of Nanodiamond under Bingel–Hirsch Conditions. ChemPhysChem, 2012, 13, 2578-2584.	2.1	18
31	Functionality is Key: Recent Progress in the Surface Modification of Nanodiamond. Advanced Functional Materials, 2012, 22, 890-906.	14.9	501
32	Playing the surface game—Diels–Alder reactions on diamond nanoparticles. Chemical Communications, 2011, 47, 544-546.	4.1	70
33	Beyond the shine: recent progress in applications of nanodiamond. Journal of Materials Chemistry, 2011, 21, 12571.	6.7	106
34	Pushing the Functionality of Diamond Nanoparticles to New Horizons: Orthogonally Functionalized Nanodiamond Using Click Chemistry. Advanced Functional Materials, 2011, 21, 494-500.	14.9	99
35	Deagglomeration and surface modification of thermally annealed nanoscale diamond. Journal of Colloid and Interface Science, 2011, 354, 23-30.	9.4	91
36	A General Procedure to Functionalize Agglomerating Nanoparticles Demonstrated on Nanodiamond. ACS Nano, 2009, 3, 2288-2296.	14.6	202

Anke Krueger

#	Article	IF	CITATIONS
37	New Carbon Materials: Biological Applications of Functionalized Nanodiamond Materials. Chemistry - A European Journal, 2008, 14, 1382-1390.	3.3	399
38	Novel immobilization routes for the covalent binding of an alcohol dehydrogenase from Rhodococcus ruber DSM 44541. Tetrahedron: Asymmetry, 2008, 19, 1171-1173.	1.8	31
39	Deagglomeration and functionalisation of detonation diamond. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2881-2887.	1.8	124