Sung Bong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8656489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nature Communications, 2021, 12, 5008.	12.8	83
2	Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat. Lab on A Chip, 2020, 20, 84-92.	6.0	67
3	Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nature Biomedical Engineering, 2020, 4, 148-158.	22.5	223
4	Skin-interfaced soft microfluidic systems with modular and reusable electronics for <i>in situ</i> capacitive sensing of sweat loss, rate and conductivity. Lab on A Chip, 2020, 20, 4391-4403.	6.0	23
5	Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27906-27915.	7.1	84
6	Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Science Advances, 2020, 6, eabb1093.	10.3	87
7	Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Science Translational Medicine, 2020, 12, .	12.4	145
8	A Bioresorbable Magnetically Coupled System for Lowâ€Frequency Wireless Power Transfer. Advanced Functional Materials, 2019, 29, 1905451.	14.9	58
9	Soft, Skin-Integrated Multifunctional Microfluidic Systems for Accurate Colorimetric Analysis of Sweat Biomarkers and Temperature. ACS Sensors, 2019, 4, 379-388.	7.8	239
10	Efficient and simultaneous cleaner production of biodiesel and glycerol carbonate in solvent-free system via statistical optimization. Journal of Cleaner Production, 2019, 218, 985-992.	9.3	20
11	Multimodal Sensing with a Three-Dimensional Piezoresistive Structure. ACS Nano, 2019, 13, 10972-10979.	14.6	134
12	Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab on A Chip, 2019, 19, 1545-1555.	6.0	157
13	Superâ€Absorbent Polymer Valves and Colorimetric Chemistries for Time‣equenced Discrete Sampling and Chloride Analysis of Sweat via Skinâ€Mounted Soft Microfluidics. Small, 2018, 14, e1703334.	10.0	119
14	Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nature Medicine, 2018, 24, 1830-1836.	30.7	331
15	Soft, Skinâ€Interfaced Microfluidic Systems with Wireless, Batteryâ€Free Electronics for Digital, Realâ€Time Tracking of Sweat Loss and Electrolyte Composition. Small, 2018, 14, e1802876.	10.0	88
16	Solution processes for ultrabroadband and omnidirectional graded-index glass lenses with near-zero reflectivity in high concentration photovoltaics. Scientific Reports, 2018, 8, 14907.	3.3	4
17	Natural Wax for Transient Electronics. Advanced Functional Materials, 2018, 28, 1801819.	14.9	90
18	A fluorometric skin-interfaced microfluidic device and smartphone imaging module for <i>in situ</i> quantitative analysis of sweat chemistry. Lab on A Chip, 2018, 18, 2178-2186.	6.0	166

SUNG BONG KIM

#	Article	IF	CITATIONS
19	Thin, Soft, Skinâ€Mounted Microfluidic Networks with Capillary Bursting Valves for Chronoâ€Sampling of Sweat. Advanced Healthcare Materials, 2017, 6, 1601355.	7.6	209
20	Microfluidic Networks: Thin, Soft, Skinâ€Mounted Microfluidic Networks with Capillary Bursting Valves for Chronoâ€Sampling of Sweat (Adv. Healthcare Mater. 5/2017). Advanced Healthcare Materials, 2017, 6, .	7.6	3
21	Production and characterization of cellobiose dehydrogenase from Phanerochaete chrysosporium KCCM 60256 and its application for an enzymatic fuel cell. Korean Journal of Chemical Engineering, 2016, 33, 3434-3441.	2.7	12
22	Stimulation of 2,3-butanediol production by upregulation of alsR gene transcription level with acetate addition in Enterobacter aerogenes ATCC 29007. Process Biochemistry, 2016, 51, 1904-1910.	3.7	12
23	Eco-design and evaluation for production of 7-aminocephalosporanic acid from carbohydrate wastes discharged after microalgae-based biodiesel production. Journal of Cleaner Production, 2016, 133, 511-517.	9.3	12
24	Utilization of hydrolysate from lignocellulosic biomass pretreatment to generate electricity by enzymatic fuel cell system. Enzyme and Microbial Technology, 2016, 85, 32-37.	3.2	6
25	Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3â€butanediol production by <i>Enterobacter aerogenes</i> . Biotechnology Journal, 2015, 10, 1920-1928.	3.5	29
26	Furfural production from hydrolysate of barley straw after dilute sulfuric acid pretreatment. Korean Journal of Chemical Engineering, 2015, 32, 2280-2284.	2.7	9
27	Development of Electron Transfer Mediator Using Modified Graphite Oxide/Cobalt for Enzymatic Fuel Cell. Journal of the Electrochemical Society, 2015, 162, G113-G118.	2.9	10
28	Optimization of medium composition for enhanced cellulase production by mutant Penicillium brasilianum KUEB15 using statistical method. Journal of Industrial and Engineering Chemistry, 2015, 25, 145-150.	5.8	37
29	Immobilization of acetyl xylan esterase on modified graphite oxide and utilization to peracetic acid production. Biotechnology and Bioprocess Engineering, 2014, 19, 1042-1047.	2.6	8
30	Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol. Bioprocess and Biosystems Engineering, 2014, 37, 1073-1084.	3.4	19
31	The hydrolysate of barley straw containing inhibitors can be used to produce cephalosporin C by solvent extraction using ethyl acetate. Process Biochemistry, 2014, 49, 2203-2206.	3.7	9
32	Statistical optimization of critical parameters for alkaline treatments of canola agricultural residue by advanced regression model. New Biotechnology, 2014, 31, S96-S97.	4.4	0
33	Process design and evaluation of production of bioethanol and Î2-lactam antibiotic from lignocellulosic biomass. Bioresource Technology, 2014, 172, 194-200.	9.6	9
34	Lipase from Penicillium camembertii KCCM 11268: Optimization of solid state fermentation and application to biodiesel production. Korean Journal of Chemical Engineering, 2013, 30, 405-412.	2.7	25
35	Biodiesel production by enzymatic process using Jatropha oil and waste soybean oil. Biotechnology and Bioprocess Engineering, 2013, 18, 703-708.	2.6	25
36	Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia. Biotechnology for Biofuels, 2013, 6, 109.	6.2	101

SUNG BONG KIM

#	Article	IF	CITATIONS
37	Rapid analysis of barley straw before and after dilute sulfuric acid pretreatment by photoluminescence. Bioresource Technology, 2013, 146, 789-793.	9.6	6
38	Co-immobilization of Candida rugosa and Rhyzopus oryzae lipases and biodiesel production. Korean Journal of Chemical Engineering, 2013, 30, 1335-1338.	2.7	42
39	Reutilization of carbon sources through sugar recovery from waste rice straw. Renewable Energy, 2013, 53, 43-48.	8.9	2
40	Kinetic modeling of biodiesel production by mixed immobilized and co-immobilized lipase systems under two pressure conditions. Korean Journal of Chemical Engineering, 2013, 30, 1272-1276.	2.7	24
41	Sugar recovery from rice straw by dilute acid pretreatment. Journal of Industrial and Engineering Chemistry, 2012, 18, 183-187.	5.8	38
42	Enhancement of immobilized enzyme activity by pretreatment of Î ² -glucosidase with cellobiose and glucose. Journal of Industrial and Engineering Chemistry, 2012, 18, 702-706.	5.8	33
43	Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes. Bioprocess and Biosystems Engineering, 2012, 35, 85-92.	3.4	30
44	Pretreatment of Rice Straw by Proton Beam Irradiation for Efficient Enzyme Digestibility. Applied Biochemistry and Biotechnology, 2011, 164, 1183-1191.	2.9	15
45	Dilute acid pretreatment of barley straw and its saccharification and fermentation. Biotechnology and Bioprocess Engineering, 2011, 16, 725-732.	2.6	45
46	Tolerance of Saccharomyces cerevisiae K35 to lignocellulose-derived inhibitory compounds. Biotechnology and Bioprocess Engineering, 2011, 16, 755-760.	2.6	38
47	Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process. Bioresource Technology, 2011, 102, 2105-2108.	9.6	102
48	Development of Batch and Continuous Processes on Biodiesel Production in a Packed-Bed Reactor by a Mixture of Immobilized Candida rugosa and Rhizopus oryzae Lipases. Applied Biochemistry and Biotechnology, 2010, 161, 365-371.	2.9	43
49	Inhibitory effect of crude glycerol on ethanol production by Enterobacter aerogenes. Journal of Biotechnology, 2010, 150, 160-160.	3.8	0
50	Effect of a buffer mixture system on the activity of lipases during immobilization process. Bioresource Technology, 2010, 101, S66-S70.	9.6	19