Changdong Sheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8656470/publications.pdf

Version: 2024-02-01

35	1,578	16	35
papers	citations	h-index	g-index
35	35	35	1503 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity. Fuel, 2007, 86, 2316-2324.	3.4	520
2	Development of non-isothermal TGA–DSC for kinetics analysis of low temperature coal oxidation prior to ignition. Fuel, 2014, 118, 385-391.	3.4	168
3	Experimental study of ash formation during pulverized coal combustion in O2/CO2 mixtures. Fuel, 2008, 87, 1297-1305.	3.4	126
4	Ash particle formation during O2/CO2 combustion of pulverized coals. Fuel Processing Technology, 2007, 88, 1021-1028.	3.7	104
5	Influences of the Heat-Treatment Temperature and Inorganic Matter on Combustion Characteristics of Cornstalk Biochars. Energy & Energy & 2012, 26, 209-218.	2.5	75
6	Fine Ash Formation during Pulverized Coal CombustionA Comparison of O2/CO2Combustion versus Air Combustionâ€. Energy & Dels, 2007, 21, 435-440.	2. 5	63
7	Influences of carbon structure on the reactivities of lignite char reacting with CO2 and NO. Fuel Processing Technology, 2010, 91, 837-842.	3.7	59
8	Simulation of Acoustic Agglomeration Processes of Poly-Disperse Solid Particles. Aerosol Science and Technology, 2007, 41, 1-13.	1.5	56
9	Modelling of acoustic agglomeration processes using the direct simulation Monte Carlo method. Journal of Aerosol Science, 2006, 37, 16-36.	1.8	53
10	Wet Removal of Sulfur Dioxide and Nitric Oxide from Simulated Coal-Fired Flue Gas by UV/H ₂ O ₂ Advanced Oxidation Process. Energy & Dioxidation Process. Energy & Diox	2.5	43
11	Effect of pyrolysis temperature on the char micro-structure and reactivity of NO reduction. Korean Journal of Chemical Engineering, 2009, 26, 895-901.	1.2	31
12	PM10 formation during the combustion of N2-char and CO2-char of Chinese coals. Proceedings of the Combustion Institute, 2013, 34, 2383-2392.	2.4	30
13	Characterization of Residual Carbon in Fly Ashes from Power Plants Firing Biomass. Energy & E	2.5	28
14	Transformation behaviors of excluded pyrite during O ₂ /CO ₂ combustion of pulverized coal. Asia-Pacific Journal of Chemical Engineering, 2010, 5, 304-309.	0.8	19
15	Comparison of Particle Size Evolution during Pulverized Coal Combustion in O ₂ /CO ₂ and O ₂ /N ₂ Atmospheres. Energy & Energy	2.5	18
16	Review on Self-Heating of Biomass Materials: Understanding and Description. Energy & Samp; Fuels, 2022, 36, 731-761.	2.5	18
17	Quantitative Analysis of NO _{<i>x</i>} Reduction in Oxy-Coal Combustion. Energy & Ene	2.5	16
18	Self-Heating of Agricultural Residues During Storage and Its Impact on Fuel Properties. Energy & Samp; Fuels, 2018, 32, 4227-4236.	2.5	16

#	Article	IF	Citations
19	Experimental research on influencing factors of wet removal of NO from coal-fired flue gas by UV/H2O2 advanced oxidation process. Science China Technological Sciences, 2010, 53, 1839-1846.	2.0	14
20	Modeling of a single char particle burning in oxygen-enriched O2/N2 and O2/CO2 environment with single film model. Fuel, 2016, 184, 905-914.	3. 4	14
21	Impact of co-firing lean coal on NO x emission of a large-scale pulverized coal-fired utility boiler during partial load operation. Korean Journal of Chemical Engineering, 2017, 34, 1273-1280.	1.2	14
22	Correlation of Sub-micrometer Ash Formation from Pulverized Biomass Combustion with Ash Composition. Energy & E	2.5	14
23	Impact of Inorganic Matter on the Low-Temperature Oxidation of Cornstalk and Cellulose Chars. Energy & Fuels, 2016, 30, 1783-1791.	2.5	12
24	Correlation of the Sub-micrometer Ash Yield from Pulverized Coal Combustion with Coal Ash Composition. Energy &	2.5	12
25	Modeling the Capture of KOH Vapor with Kaolin under Conditions of Pulverized Fuel-Fired Boilers. Energy & Energ	2.5	9
26	Low temperature oxidation and its kinetics of cornstalk chars. Fuel, 2016, 184, 915-921.	3.4	7
27	Moisture Sorption Isotherm of Herbaceous and Agricultural Biomass. Energy &	2.5	7
28	Crude Oil Recovery from Oily Sludge Using Liquefied Dimethyl Ether Extraction: A Comparison with Conventional Extraction Methods. Energy & Samp; Fuels, 2021, 35, 17810-17819.	2.5	7
29	Modeling K-Containing Vapors Transforming into Sub-micrometer Particles in Flue Gas of Pulverized Straw Combustion. Energy & Straw Combustion. Energy & Ener	2.5	6
30	Reduction of Recycled NO $<$ sub $><$ i $>xi></sub> by Simulated Coal Volatiles in Oxy-Fuel Combustion. Energy & Simulated Coal Volatiles in Oxy-Fuel Combustion.$	2.5	5
31	Modeling the Vaporization of Inorganic Matter from a Single Coal Char Particle Burning in an O ₂ /CO ₂ Atmosphere. Energy & Ener	2.5	5
32	Characterizing self-heating of cereal straws by isothermal microcalorimetry. Thermochimica Acta, 2021, 698, 178881.	1.2	3
33	Modelling Particle Size Distribution of Residual Fly Ash from Pulverized Biomass Combustion. Journal of Biobased Materials and Bioenergy, 2021, 15, 75-82.	0.1	2
34	Liquefied dimethyl ether based multi-stage extraction for high efficient oil recovery from spent bleaching clay. Waste Management, 2021, 136, 204-212.	3.7	2
35	Modeling the Process and Properties of Ash Formation during Pulverized Biomass Combustion. Energies, 2022, 15, 4417.	1.6	2