Xian-Bing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8656449/publications.pdf

Version: 2024-02-01

257450 182427 2,835 58 24 51 citations h-index g-index papers 62 62 62 2516 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A cytorhabdovirus-based expression vector in Nilaparvata lugens, Laodelphax striatellus, and Sogatella furcifera. Insect Biochemistry and Molecular Biology, 2022, 140, 103703.	2.7	3
2	Developing reverse genetics systems of northern cereal mosaic virus to reveal superinfection exclusion of two cytorhabdoviruses in barley plants. Molecular Plant Pathology, 2022, 23, 749-756.	4.2	11
3	A Versatile Expression Platform in Insects and Cereals Based on a Cytorhabdovirus. Methods in Molecular Biology, 2022, 2400, 163-170.	0.9	2
4	Host casein kinase 1-mediated phosphorylation modulates phase separation of a rhabdovirus phosphoprotein and virus infection. ELife, 2022, 11 , .	6.0	21
5	Barley stripe mosaic virus \hat{I}^3 b protein targets thioredoxin h-type 1 to dampen salicylic acid-mediated defenses. Plant Physiology, 2022, 189, 1715-1727.	4.8	7
6	RNA In Situ Hybridization of Detecting Cucumber Mosaic Virus in Shoots of Nicotiana benthamiana Plants. Methods in Molecular Biology, 2022, 2400, 283-296.	0.9	0
7	MAPKs trigger antiviral immunity by directly phosphorylating a rhabdovirus nucleoprotein in plants and insect vectors. Plant Cell, 2022, 34, 3110-3127.	6.6	11
8	Palmitoylation of \hat{l}^3b protein directs a dynamic switch between <i>Barley stripe mosaic virus</i> replication and movement. EMBO Journal, 2022, 41, .	7.8	3
9	A rhabdovirus accessory protein inhibits jasmonic acid signaling in plants to attract insect vectors. Plant Physiology, 2022, 190, 1349-1364.	4.8	6
10	Tobacco Necrosis Virus-A ^C Single Coat Protein Amino Acid Substitutions Determine Host-Specific Systemic Infections of <i>Nicotiana benthamiana</i> and Soybean. Molecular Plant-Microbe Interactions, 2021, 34, 49-61.	2.6	11
11	Threeâ€dimensional reconstruction and comparison of vacuolar membranes in response to viral infection. Journal of Integrative Plant Biology, 2021, 63, 353-364.	8.5	14
12	The serine/threonine/tyrosine kinase STY46 defends against hordeivirus infection by phosphorylating \hat{l}^3 b protein. Plant Physiology, 2021, 186, 715-730.	4.8	19
13	A small peptide inhibits siRNA amplification in plants by mediating autophagic degradation of SGS3/RDR6 bodies. EMBO Journal, 2021, 40, e108050.	7.8	30
14	<i>Barley stripe mosaic virus</i> î³b protein disrupts chloroplast antioxidant defenses to optimize viral replication. EMBO Journal, 2021, 40, e107660.	7.8	27
15	A putative nuclear copper chaperone promotes plant immunity in Arabidopsis. Journal of Experimental Botany, 2020, 71, 6684-6696.	4.8	11
16	Reverse genetics systems of plant negative-strand RNA viruses are difficult to be developed but powerful for virus-host interaction studies and virus-based vector applications. Phytopathology Research, 2020, 2, .	2.4	18
17	Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection. Viruses, 2020, 12, 310.	3.3	18
18	Casein Kinase 1 Regulates Cytorhabdovirus Replication and Transcription by Phosphorylating a Phosphoprotein Serine-Rich Motif. Plant Cell, 2020, 32, 2878-2897.	6.6	17

#	Article	IF	CITATIONS
19	SMALL LEAF AND BUSHY1 controls organ size and lateral branching by modulating the stability of BIG SEEDS1 in <i>Medicago truncatula</i> New Phytologist, 2020, 226, 1399-1412.	7.3	24
20	CCR4, a RNA decay factor, is hijacked by a plant cytorhabdovirus phosphoprotein to facilitate virus replication. ELife, 2020, 9, .	6.0	20
21	Interaction between Brassica yellows virus silencing suppressor PO and plant SKP1 facilitates stability of PO <i>inÂvivo</i> against degradation by proteasome and autophagy pathways. New Phytologist, 2019, 222, 1458-1473.	7. 3	41
22	A Sensitized Genetic Screen to Identify Novel Components and Regulators of the Host Antiviral RNA Interference Pathway. Methods in Molecular Biology, 2019, 2028, 215-229.	0.9	5
23	Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies. New Phytologist, 2019, 223, 2120-2133.	7.3	83
24	A cytorhabdovirus phosphoprotein forms mobile inclusions trafficked on the actin/ER network for viral RNA synthesis. Journal of Experimental Botany, 2019, 70, 4049-4062.	4.8	25
25	Genetic analysis of a Piezo-like protein suppressing systemic movement of plant viruses in Arabidopsis thaliana. Scientific Reports, 2019, 9, 3187.	3.3	42
26	Brassica yellows virus PO protein impairs the antiviral activity of NbRAF2 in Nicotiana benthamiana. Journal of Experimental Botany, 2018, 69, 3127-3139.	4.8	22
27	<i>Barley stripe mosaic virus</i> infection requires PKAâ€mediated phosphorylation of γb for suppression of both RNA silencing and the host cell death response. New Phytologist, 2018, 218, 1570-1585.	7.3	40
28	Barley Stripe Mosaic Virus \hat{I}^3 b Interacts with Glycolate Oxidase and Inhibits Peroxisomal ROS Production to Facilitate Virus Infection. Molecular Plant, 2018, 11, 338-341.	8.3	46
29	Hijacking of the nucleolar protein fibrillarin by TGB1 is required for cellâ€toâ€cell movement of <i>Barley stripe mosaic virus</i> . Molecular Plant Pathology, 2018, 19, 1222-1237.	4.2	41
30	Identification of a New Host Factor Required for Antiviral RNAi and Amplification of Viral siRNAs. Plant Physiology, 2018, 176, 1587-1597.	4.8	37
31	Brassica yellows virus' movement protein upregulates anthocyanin accumulation, leading to the development of purple leaf symptoms on Arabidopsis thaliana. Scientific Reports, 2018, 8, 16273.	3.3	19
32	<i>Barley stripe mosaic virus</i> \hat{I}^3 b Protein Subverts Autophagy to Promote Viral Infection by Disrupting the ATG7-ATG8 Interaction. Plant Cell, 2018, 30, 1582-1595.	6.6	114
33	Transmission Characteristics of Barley Yellow Striate Mosaic Virus in Its Planthopper Vector Laodelphax striatellus. Frontiers in Microbiology, 2018, 9, 1419.	3.5	29
34	Functional Specialization of Duplicated AGAMOUS Homologs in Regulating Floral Organ Development of Medicago truncatula. Frontiers in Plant Science, 2018, 9, 854.	3.6	18
35	Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Research, 2017, 27, 402-415.	12.0	115
36	Lipid flippases promote antiviral silencing and the biogenesis of viral and host siRNAs in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1377-1382.	7.1	52

#	Article	IF	CITATIONS
37	The Barley stripe mosaic virus \hat{l}^3 b protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes. PLoS Pathogens, 2017, 13, e1006319.	4.7	65
38	Rice black streaked dwarf virus P7-2 forms a SCF complex through binding to Oryza sativa SKP1-like proteins, and interacts with GID2 involved in the gibberellin pathway. PLoS ONE, 2017, 12, e0177518.	2.5	28
39	Cucumber mosaic virus coat protein modulates the accumulation of 2b protein and antiviral silencing that causes symptom recovery in planta. PLoS Pathogens, 2017, 13, e1006522.	4.7	59
40	Improved Pathogenicity of a Beet Black Scorch Virus Variant by Low Temperature and Co-infection with Its Satellite RNA. Frontiers in Microbiology, 2016, 7, 1771.	3.5	13
41	Two amino acids near the <scp>N</scp> â€terminus of <i>Cucumber mosaic virus</i> 2b play critical roles in the suppression of <scp>RNA</scp> silencing and viral infectivity. Molecular Plant Pathology, 2016, 17, 173-183.	4.2	33
42	Phosphorylation of Beet black scorch virus coat protein by PKA is required for assembly and stability of virus particles. Scientific Reports, 2015, 5, 11585.	3.3	26
43	Transcriptome Analysis of Beta macrocarpa and Identification of Differentially Expressed Transcripts in Response to Beet Necrotic Yellow Vein Virus Infection. PLoS ONE, 2015, 10, e0132277.	2.5	11
44	Characterization of the complete genome of Barley yellow striate mosaic virus reveals a nested gene encoding a small hydrophobic protein. Virology, 2015, 478, 112-122.	2.4	64
45	Phosphorylation of TGB1 by protein kinase CK2 promotes barley stripe mosaic virus movement in monocots and dicots. Journal of Experimental Botany, 2015, 66, 4733-4747.	4.8	44
46	Morphogenesis of Endoplasmic Reticulum Membrane-Invaginated Vesicles during Beet Black Scorch Virus Infection: Role of Auxiliary Replication Protein and New Implications of Three-Dimensional Architecture. Journal of Virology, 2015, 89, 6184-6195.	3.4	56
47	Deep Sequencing–Based Transcriptome Profiling Reveals Comprehensive Insights into the Responses of Nicotiana benthamiana to Beet necrotic yellow vein virus Infections Containing or Lacking RNA4. PLoS ONE, 2014, 9, e85284.	2.5	26
48	Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in $\langle i \rangle$ Arabidopsis $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14613-14618.	7.1	189
49	Infection of Beet necrotic yellow vein virus with RNA4-encoded P31 specifically up-regulates pathogenesis-related protein 10 in Nicotiana benthamiana. Virology Journal, 2014, 11, 118.	3.4	19
50	Selection of reference genes for gene expression studies in virus-infected monocots using quantitative real-time PCR. Journal of Biotechnology, 2013, 168, 7-14.	3.8	33
51	Oomycete pathogens encode RNA silencing suppressors. Nature Genetics, 2013, 45, 330-333.	21.4	238
52	Enhanced Virus Resistance in Transgenic Maize Expressing a dsRNA-Specific Endoribonuclease Gene from E. coli. PLoS ONE, 2013, 8, e60829.	2.5	17
53	Two distinct sites are essential for virulent infection and support of variant satellite RNA replication in spontaneous beet black scorch virus variants. Journal of General Virology, 2012, 93, 2718-2728.	2.9	10
54	The 21-Nucleotide, but Not 22-Nucleotide, Viral Secondary Small Interfering RNAs Direct Potent Antiviral Defense by Two Cooperative Argonautes in <i>Arabidopsis thaliana</i> ÂÂ. Plant Cell, 2011, 23, 1625-1638.	6.6	354

#	Article	IF	CITATIONS
55	RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 484-489.	7.1	385
56	Viral Suppressors of RNA-Based Viral Immunity: Host Targets. Cell Host and Microbe, 2010, 8, 12-15.	11.0	138
57	Identification of two RNA silencing suppressors from banana bunchy top virus. Archives of Virology, 2009, 154, 1775-1783.	2.1	24
58	Identification of Alfalfa dwarf virus in Xinjiang Province, China. Plant Disease, 0, , .	1.4	1