
Brian Julsgaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8656422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signal requirements for 3D optically stimulated luminescence dosimetry. Journal of Physics: Conference Series, 2022, 2167, 012033.	0.4	3
2	Synthesis and structural characterization of Al ₂ O ₃ nanoparticles: Towards 3D optically stimulated luminescence dosimetry. Journal of Physics: Conference Series, 2022, 2167, 012023.	0.4	2
3	RSC: Optically stimulated emission of LiF:Mg, Cu, P - towards 3D optically stimulated luminescence dosimetry. Journal of Physics: Conference Series, 2022, 2167, 012026.	0.4	1
4	A Novel Nanocomposite Material for Optically Stimulated Luminescence Dosimetry. Nano Letters, 2022, 22, 1566-1572.	9.1	15
5	Optically stimulated luminescence in state-of-the-art LYSO:Ce scintillators enables high spatial resolution 3D dose imaging. Scientific Reports, 2022, 12, 8301.	3.3	9
6	Sputter-Deposited Titanium Oxide Layers as Efficient Electron Selective Contacts in Organic Photovoltaic Devices. ACS Applied Energy Materials, 2020, 3, 253-259.	5.1	12
7	Optical characterization of LiF:Mg,Cu,P – Towards 3D optically stimulated luminescence dosimetry. Radiation Measurements, 2020, 138, 106390.	1.4	16
8	Improving Upconversion Efficiency by Photon Management in Self-Assembled Core/Shell Nanocrystal Films. Journal of Physical Chemistry C, 2020, 124, 22357-22365.	3.1	4
9	Strongly enhanced upconversion in trivalent erbium ions by tailored gold nanostructures: Toward high-efficient silicon-based photovoltaics. Solar Energy Materials and Solar Cells, 2020, 208, 110406.	6.2	14
10	Carrier lifetime of GeSn measured by spectrally resolved picosecond photoluminescence spectroscopy. Photonics Research, 2020, 8, 788.	7.0	19
11	Enhanced upconversion via plasmonic near-field effects: role of the particle shape. Journal of Optics (United Kingdom), 2019, 21, 035004.	2.2	8
12	Analytical model for the intensity dependence of 1500 nm to 980 nm upconversion in Er3+: A new tool for material characterization. Journal of Applied Physics, 2019, 125, 043106.	2.5	10
13	Resonant Plasmon-Enhanced Upconversion in Monolayers of Core–Shell Nanocrystals: Role of Shell Thickness. ACS Applied Materials & Interfaces, 2019, 11, 1209-1218.	8.0	17
14	Near-field marking of gold nanostars by ultrashort pulsed laser irradiation: experiment and simulations. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	6
15	Evolution of Electrically Active Defects in nâ€GaN During Heat Treatment Typical for Ohmic Contact Formation. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700516.	1.8	6
16	Optical characterization of SiC films grown on Si(111). Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	0
17	Upconversion luminescence from magnetron-sputtered Er3+-doped TiO2 films: Influence of deposition- and annealing temperatures and correlation to decay times. Journal of Applied Physics, 2018, 124, 163105.	2.5	8
18	Impact of a SiGe interfacial layer on the growth of a SiC layer on Si with voids at the interface. Thin Solid Films, 2018, 662, 103-109.	1.8	5

BRIAN JULSGAARD

#	Article	IF	CITATIONS
19	Field-enhancing photonic devices utilizing waveguide coupling and plasmonics - a selection rule for optimization-based design. Optics Express, 2018, 26, A788.	3.4	4
20	Time-resolved infrared photoluminescence spectroscopy using parametric three-wave mixing with angle-tuned phase matching. Optics Letters, 2018, 43, 3001.	3.3	5
21	Short-Circuit Degradation of 10-kV 10-A SiC MOSFET. IEEE Transactions on Power Electronics, 2017, 32, 9342-9354.	7.9	59
22	Topology optimized gold nanostrips for enhanced near-infrared photon upconversion. Applied Physics Letters, 2017, 111, .	3.3	13
23	Erbium diffusion in titanium dioxide. AIP Advances, 2017, 7, 045202.	1.3	1
24	Light emission from silicon containing Sn-nanocrystals. , 2016, , .		0
25	Plasmonically enhanced upconversion of 1500 nm light via trivalent Er in a TiO2 matrix. Applied Physics Letters, 2016, 109, .	3.3	19
26	Towards a spin-ensemble quantum memory for superconducting qubits. Comptes Rendus Physique, 2016, 17, 693-704.	0.9	34
27	Optimizing Plasmonically Enhanced Upconversion. Energy Procedia, 2015, 77, 478-486.	1.8	7
28	Light emission from silicon with tin-containing nanocrystals. AIP Advances, 2015, 5, .	1.3	8
29	Up-conversion enhancement in Er3+ doped TiO2 through plasmonic coupling: Experiments and finite-element modeling. Applied Physics Letters, 2015, 106, 053101.	3.3	18
30	Fidelity of Fock-state-encoded qubits subjected to continuous-variable Gaussian processes. Physical Review A, 2014, 89, .	2.5	3
31	Infrared upconversion in radio frequency magnetron sputtered Er-doped zinc oxide thin films. Applied Physics Letters, 2014, 104, 102106.	3.3	16
32	Fundamental limitations in spin-ensemble quantum memories for cavity fields. Physical Review A, 2013, 88, .	2.5	15
33	Quantum Memory for Microwave Photons in an Inhomogeneously Broadened Spin Ensemble. Physical Review Letters, 2013, 110, 250503.	7.8	119
34	Dynamical evolution of an inverted spin ensemble in a cavity: Inhomogeneous broadening as a stabilizing mechanism. Physical Review A, 2012, 86, .	2.5	17
35	Measurement-induced two-qubit entanglement in a bad cavity: Fundamental and practical considerations. Physical Review A, 2012, 85, .	2.5	13
36	Auger-decay dynamics of germanium nano-islands in silicon. Nanotechnology, 2011, 22, 435401.	2.6	6

BRIAN JULSGAARD

#	Article	IF	CITATIONS
37	Deterministic Atom–Light Quantum Interface. Advances in Atomic, Molecular and Optical Physics, 2007, 54, 81-130.	2.3	29
38	Quantum teleportation between light and matter. Nature, 2006, 443, 557-560.	27.8	644
39	Experimental demonstration of quantum memory for light. Nature, 2004, 432, 482-486.	27.8	727
40	Experimental long-lived entanglement of two macroscopic objects. Nature, 2001, 413, 400-403.	27.8	980