
Jeffery S Tessem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8656020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential of Phenolic Compounds and Their Gut Microbiota-Derived Metabolites to Reduce TMA Formation: Application of an <i>In Vitro</i> Fermentation High-Throughput Screening Model. Journal of Agricultural and Food Chemistry, 2022, 70, 3207-3218.	2.4	8
2	Elevated Glucose Negatively Regulates Nkx6.1 Protein Level in the Pancreatic Beta Cell. FASEB Journal, 2022, 36, .	0.2	0
3	Ca2+ Sensors Assemble: Function of the MCU Complex in the Pancreatic Beta Cell. Cells, 2022, 11, 1993.	1.8	2
4	Diet-induced obesity in genetically diverse collaborative cross mouse founder strains reveals diverse phenotype response and amelioration by quercetin treatment in 129S1/SvImJ, PWK/EiJ, CAST/PhJ, and WSB/EiJ mice. Journal of Nutritional Biochemistry, 2021, 87, 108521.	1.9	11
5	1242-P: Defining the Nkx6.1 Interactome in Beta Cells Reveals a Novel Interaction with Pdx1. Diabetes, 2021, 70, 1242-P.	0.3	1
6	1244-P: The Protein Phosphatase PPm1k Regulates Ribosomal Protein S6 Phosphorylation in Beta Cells. Diabetes, 2021, 70, .	0.3	1
7	Gut Metabolite Trimethylamine N-oxide Protects β Cell Insulin Secretion by Reducing Oxidative Stress and Maintaining Insulin Granule Formation. Current Developments in Nutrition, 2021, 5, 57.	0.1	1
8	Evaluation of Poorly-Bioavailable Cocoa Flavanols and Their Gut Microbial Metabolites in Potentiating Anti-diabetic Activities Through BTBR.Cg-Lepob/ob/WiscJ Mice. Current Developments in Nutrition, 2021, 5, 361.	0.1	0
9	The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients, 2021, 13, 2873.	1.7	21
10	Identification of direct transcriptional targets of NFATC2 that promote β cell proliferation. Journal of Clinical Investigation, 2021, 131, .	3.9	15
11	Decreased proliferation of aged rat beta cells corresponds with enhanced expression of the cell cycle inhibitor p27 ^{KIP1} . Biology of the Cell, 2021, 113, 507-521.	0.7	3
12	Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions. Biomolecules, 2021, 11, 1892.	1.8	11
13	Good Cop, Bad Cop: The Opposing Effects of Macrophage Activation State on Maintaining or Damaging Functional β-Cell Mass. Metabolites, 2020, 10, 485.	1.3	13
14	Lack of skeletal muscle liver kinase B1 alters gene expression, mitochondrial content, inflammation and oxidative stress without affecting high-fat diet-induced obesity or insulin resistance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165805.	1.8	6
15	2120-P: The Protein Phosphatase M1K Connects Glucose Sensing to Protein Translation in Pancreatic Beta Cells. Diabetes, 2020, 69, .	0.3	Ο
16	Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues. Cells, 2019, 8, 1373.	1.8	87
17	2191-P: PPM1K Regulates ß-Cell Proliferation, Insulin Content, and GSIS. Diabetes, 2019, 68, .	0.3	1
18	2190-P: Sex-Based Differences in Nr4a1 Beta-Cell Activity, Diabetes, 2019, 68, .	0.3	0

JEFFERY S TESSEM

#	Article	IF	CITATIONS
19	High-resolution Respirometry to Measure Mitochondrial Function of Intact Beta Cells in the Presence of Natural Compounds. Journal of Visualized Experiments, 2018, , .	0.2	4
20	HDAC1 overexpression enhances β-cell proliferation by down-regulating Cdkn1b/p27. Biochemical Journal, 2018, 475, 3997-4010.	1.7	13
21	Common gut microbial metabolites of dietary flavonoids exert potent protective activities in β-cells and skeletal muscle cells. Journal of Nutritional Biochemistry, 2018, 62, 95-107.	1.9	45
22	β-Hydroxybutyrate Elicits Favorable Mitochondrial Changes in Skeletal Muscle. International Journal of Molecular Sciences, 2018, 19, 2247.	1.8	27
23	Nr4a1 and Nr4a3 Knock Out Mice Have Impaired Glucose Clearance and Beta-Cell Function under High-Fat Feeding. Diabetes, 2018, 67, .	0.3	3
24	Acylation of Superoxide Dismutase 1 (SOD1) at K122 Governs SOD1-Mediated Inhibition of Mitochondrial Respiration. Molecular and Cellular Biology, 2017, 37, .	1.1	16
25	Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration. Journal of Nutritional Biochemistry, 2017, 49, 30-41.	1.9	59
26	Cdk5r1 Overexpression Induces Primary <i>β</i> -Cell Proliferation. Journal of Diabetes Research, 2016, 2016, 1-15.	1.0	18
27	Nkx6.1â€mediated insulin secretion and βâ€cell proliferation is dependent on upregulation of câ€Fos. FEBS Letters, 2016, 590, 1791-1803.	1.3	30
28	β-Cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E186-E201.	1.8	37
29	Mechanisms by which cocoa flavanols improve metabolic syndrome and related disorders. Journal of Nutritional Biochemistry, 2016, 35, 1-21.	1.9	74
30	β-Hydroxybutyrate improves β-cell mitochondrial function and survival. Journal of Insulin Resistance, 2016, 1, .	0.6	2
31	Aurora Kinase A is critical for the Nkx6.1 mediated \hat{I}^2 -cell proliferation pathway. Islets, 2015, 7, e1027854.	0.9	24
32	câ€Fos increases functional βâ€cell mass. FASEB Journal, 2015, 29, 997.3.	0.2	0
33	Aurora Kinase A is critical for the Nkx6.1 mediated β ell proliferation pathway. FASEB Journal, 2015, 29, 974.17.	0.2	0
34	Expression of Cdk5r1 and not Cdk5r induces primary β ell proliferation. FASEB Journal, 2015, 29, 974.18.	0.2	0
35	Nkx6.1 regulates islet β-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5242-5247.	3.3	84
36	Stimulation of Human and Rat Islet β-Cell Proliferation with Retention of Function by the Homeodomain Transcription Factor Nkx6.1. Molecular and Cellular Biology, 2008, 28, 3465-3476.	1.1	93

JEFFERY S TESSEM

#	Article	IF	CITATIONS
37	Critical Roles for Macrophages in Islet Angiogenesis and Maintenance During Pancreatic Degeneration. Diabetes, 2008, 57, 1605-1617.	0.3	50
38	A CRITICAL ROLE FOR MACROPHAGES IN PREVENTING PANCREATITIS ASSOCIATED DIABETES. Pancreas, 2007, 35, 431.	0.5	0
39	Roles for bone-marrow-derived cells in β-cell maintenance. Trends in Molecular Medicine, 2004, 10, 558-564.	3.5	8
40	The development of diabetes in E2f1/E2f2 mutant mice reveals important roles for bone marrow-derived cells in preventing islet cell loss. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12935-12940.	3.3	80