Nuria Sotomayor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8655226/publications.pdf

Version: 2024-02-01

87 papers	1,907 citations	218381 26 h-index	315357 38 g-index
110	110	110	1518
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Aryl and Heteroaryllithium Compounds by Metal - Halogen Exchange. Synthesis of Carbocyclic and Heterocyclic Systems. Current Organic Chemistry, 2003, 7, 275-300.	0.9	100
2	General Theory for Multiple Input-Output Perturbations in Complex Molecular Systems. 1. Linear QSPR Electronegativity Models in Physical, Organic, and Medicinal Chemistry. Current Topics in Medicinal Chemistry, 2013, 13, 1713-1741.	1.0	83
3	Bischlerâ^Napieralski Cyclizationâ^N/C-Alkylation Sequences for the Construction of Isoquinoline Alkaloids. Synthesis of Protoberberines and Benzo[c]phenanthridines via C-2â€~Functionalized 3-Arylisoquinolines1. Journal of Organic Chemistry, 1996, 61, 4062-4072.	1.7	79
4	Metalation vs Nucleophilic Addition in the Reactions of N-Phenethylimides with Organolithium Reagents. Ready Access to Isoquinoline Derivatives via N-Acyliminium Ions and Parham-Type Cyclizations. Journal of Organic Chemistry, 1997, 62, 2080-2092.	1.7	77
5	Brønsted Acid Catalyzed Enantioselective α-Amidoalkylation in the Synthesis of Isoindoloisoquinolines. Journal of Organic Chemistry, 2012, 77, 2986-2991.	1.7	64
6	Strategies Based on Aryllithium and <i>N</i> â€Acyliminium Ion Cyclizations for the Stereocontrolled Synthesis of Alkaloids and Related Systems. European Journal of Organic Chemistry, 2011, 2011, 3610-3633.	1.2	61
7	Enantiodivergent Synthesis of Pyrrolo $[2,1-a]$ is oquinolines Based on Diastereoselective Parham Cyclization and $\hat{1}\pm$ -Amidoalkylation Reactions. Journal of Organic Chemistry, 2004, 69, 3875-3885.	1.7	47
8	Tandem Parham cyclisation––α-amidoalkylation reaction in the synthesis of the isoindolo[1,2- a]isoquinoline skeleton of nuevamine-type alkaloids. Tetrahedron Letters, 2004, 45, 1253-1256.	0.7	47
9	Diastereoselective Intramolecular α-Amidoalkylation Reactions ofl-DOPA Derivatives. Asymmetric Synthesis of Pyrrolo[2,1-a]isoquinolines. Journal of Organic Chemistry, 2005, 70, 10368-10374.	1.7	44
10	Synthesis of enantiomerically enriched amines by chiral ligand mediated addition of organolithium reagents to imines. Tetrahedron: Asymmetry, 2001, 12, 2077-2082.	1.8	42
11	Functionalized organolithium compounds: Generation via reductive lithiation and nucleophilic addition to N-phenethylimides. Access to functionalized dihydropyrrolo[2,1-a]isoquinolinones. Tetrahedron, 1998, 54, 12361-12378.	1.0	40
12	An efficient entry to pyrrolo[1,2-b]isoquinolines and related systems through Parham cyclisation. Tetrahedron, 2005, 61, 3311-3324.	1.0	39
13	Modeling Antibacterial Activity with Machine Learning and Fusion of Chemical Structure Information with Microorganism Metabolic Networks. Journal of Chemical Information and Modeling, 2019, 59, 1109-1120.	2.5	39
14	Parham-Type Cycliacylation with Weinreb Amides. Application to the Synthesis of Fused Indolizinone Systems. Organic Letters, 2003, 5, 1115-1117.	2.4	38
15	Tandem carbophilic addition-N-acyliminium ion cyclization for the synthesis of functionalized pyrrolo[2,1-a]isoquinolones: Key intermediates for the preparation of Erythrina-type alkaloids. Tetrahedron Letters, 1996, 37, 7841-7844.	0.7	36
16	Intramolecular Palladiumâ€Catalyzed Direct Arylation <i>vs.</i> Heck Reactions: Synthesis of Pyrroloisoquinolines and Isoindoles. Advanced Synthesis and Catalysis, 2009, 351, 2460-2468.	2.1	36
17	α-Aryl O-vinyl carbamates. Tandem carbolithiation â€" α-alkylation and -[1,2]-Wittig rearrangement reactions. Tetrahedron Letters, 1996, 37, 6061-6064.	0.7	35
18	Perturbation-Theory and Machine Learning (PTML) Model for High-Throughput Screening of Parham Reactions: Experimental and Theoretical Studies. Journal of Chemical Information and Modeling, 2018, 58, 1384-1396.	2.5	35

#	Article	IF	CITATIONS
19	Enantioselective synthesis of pyrrolo[2,1-a]isoquinolones via stereocontrolled N-acyliminium ion cyclisations. Tetrahedron Letters, 2001, 42, 1511-1513.	0.7	34
20	Pd-catalyzed arylation/ring-closing metathesis approach to azabicycles. Tetrahedron Letters, 2007, 48, 2919-2922.	0.7	34
21	Enantioselective intramolecular \hat{l}_{\pm} -amidoalkylation reaction in the synthesis of pyrrolo[2,1-a]isoquinolines. Tetrahedron Letters, 2012, 53, 2157-2159.	0.7	32
22	Intramolecular Direct Arylation and Heck Reactions in the Formation of Mediumâ€Sized Rings: Selective Synthesis of Fused Indolizine, Pyrroloazepine and Pyrroloazocine Systems. Advanced Synthesis and Catalysis, 2014, 356, 1853-1865.	2.1	32
23	Inter- and intramolecular enantioselective carbolithiation reactions. Beilstein Journal of Organic Chemistry, 2013, 9, 313-322.	1.3	30
24	\hat{l}_{\pm} -Zinc >O-vinyl carbamates as anionic Friedel-Crafts equivalents. Cross coupling reactions with aryl and heteroaryl halides and triflates. Tetrahedron Letters, 1996, 37, 6057-6060.	0.7	29
25	Parham-type cyclization and nucleophilic addition - N-acyliminium ion cyclization sequences for the construction of the isoquinoline nucleus. Tetrahedron Letters, 1996, 37, 6193-6196.	0.7	29
26	A practical approach to the fused \hat{l}^2 -carboline system. Asymmetric synthesis of indolo [2,3-a]indolizidinones via a diastereoselective intramolecular \hat{l} ±-amidoalkylation reaction. Tetrahedron Letters, 2003, 44, 8445-8448.	0.7	29
27	Stereodivergent Synthesis of Hetero-Fused Isoquinolines by Acyliminium and Metallation Methods. European Journal of Organic Chemistry, 2001, 2001, 1267-1277.	1.2	28
28	Highly Diastereoselective Intramolecular \hat{l} ±-Amidoalkylation Reactions of Hydroxylactams Derived from N-Phenethylimides. Enantioselective Synthesis of Dihydropyrrolo[2,1-a] isoquinolones. Synlett, 2002, 2002, 0593-0597.	1.0	27
29	Two Consecutive Palladium(II)â€Promoted CH Alkenylation Reactions for the Synthesis of 3â€Alkenylquinolones. Advanced Synthesis and Catalysis, 2015, 357, 463-473.	2.1	27
30	Matrix Trace Operators: From Spectral Moments of Molecular Graphs and Complex Networks to Perturbations in Synthetic Reactions, Micelle Nanoparticles, and Drug ADME Processes. Current Drug Metabolism, 2014, 15, 470-488.	0.7	26
31	Intramolecular Carbolithiation Reactions for the Synthesis of 2,4-Disubstituted Tetrahydro-quinolines: Evaluation of TMEDA and (â^')-Sparteine as Ligands in the Stereoselectivity â€ Dedicated to Prof. Josep Font on the occasion of his 70th birthday Organic Letters, 2009, 11, 1237-1240.	2.4	25
32	MIANN Models in Medicinal, Physical and Organic Chemistry. Current Topics in Medicinal Chemistry, 2013, 13, 619-641.	1.0	25
33	Enantioselective Palladiumâ€Catalyzed Heck–Heck Cascade Reactions: Ready Access to the Tetracyclic Core of Lycorane Alkaloids. Advanced Synthesis and Catalysis, 2015, 357, 3206-3214.	2.1	24
34	Synthesis of PyrroloisoquinolonesviaOrganolithium Additions toN-Phenethylsuccinimides. Synlett, 1993, 1993, 41-42.	1.0	23
35	An improved method for the generation of imines and enamides. Application to the synthesis of 3-arylisoquinoline derivatives. Tetrahedron, 1994, 50, 2207-2218.	1.0	23
36	Conjugate Additions of Sulfur-Stabilized Anions to Unsaturated Lactams. Synthesis of Polyfunctionalized Benzo[a]quinolizinone Systems. Journal of Organic Chemistry, 2006, 71, 6776-6784.	1.7	23

#	Article	IF	CITATIONS
37	Synthesis of enantiomerically enriched β-amino alcohol derivatives via asymmetric lithiation of O-benzyl carbamates–imine addition using (Ⱂ)-sparteine complexes. Tetrahedron: Asymmetry, 2002, 13, 311-316.	1.8	21
38	Intramolecular cyclisation of functionalised heteroaryllithiums. Synthesis of novel indolizinone-based compounds. Tetrahedron, 2006, 62, 6182-6189.	1.0	21
39	Chiral Brønsted Acidâ€Catalyzed Enantioselective αâ€Amidoalkylation Reactions: A Joint Experimental and Predictive Study. ChemistryOpen, 2016, 5, 540-549.	0.9	21
40	Perturbation theory model of reactivity and enantioselectivity of palladium-catalyzed Heck–Heck cascade reactions. RSC Advances, 2016, 6, 38602-38610.	1.7	21
41	Cp*Co(III)-Catalyzed C–H Hydroarylation of Alkynes and Alkenes and Beyond: A Versatile Synthetic Tool. ACS Omega, 2020, 5, 24974-24993.	1.6	21
42	Metalation–cyclisation sequence on N-(o-halobenzyl)pyrroles. Synthesis of pyrrolo[1,2-b]isoquinolones. Tetrahedron Letters, 2000, 41, 5211-5214.	0.7	20
43	Pd(II)-Catalyzed C-H Acylation of (Hetero)arenesâ€"Recent Advances. Molecules, 2020, 25, 3247.	1.7	19
44	Synthesis of 5-arylpyrrolo $[2,1-a]$ is oquinolin-3 $(2H)$ -ones from N-phenethylsuccinimides and organolithium reagents. Tetrahedron, 1995, 51, 4701-4710.	1.0	18
45	Palladium-catalysed Heck-type alkenylation reactions in the synthesis of quinolines. Mechanistic insights and recent applications. Catalysis Science and Technology, 2020, 10, 5345-5361.	2.1	18
46	Palladium(II)-Catalyzed Intramolecular C–H Alkenylation for the Synthesis of Chromanes. Journal of Organic Chemistry, 2019, 84, 2048-2060.	1.7	16
47	Amide-Directed Intramolecular Co(III)-Catalyzed C–H Hydroarylation of Alkenes for the Synthesis of Dihydrobenzofurans with a Quaternary Center. Journal of Organic Chemistry, 2020, 85, 10261-10270.	1.7	16
48	A convenient approach to the synthesis of benzo[c]phenanthridines via intramolecular cyclization of enamides. Tetrahedron Letters, 1994, 35, 2973-2976.	0.7	14
49	Oxidation Reactions of 2′-Functionalized 3-Aryltetrahydro and 3,4-Dihydroisoquinolines. Tetrahedron, 1995, 51, 12721-12730.	1.0	14
50	Stereoselective synthesis of thiaerythrinanes based on an \hat{l}_{\pm} -amidoalkylation/RCM approach. Tetrahedron, 2008, 64, 1323-1332.	1.0	14
51	Isoquinoline formation via iminium ions cyclization: A direct approach to c-2′ functionalized 3-aryltetrahydroisoquinolines. Tetrahedron, 1995, 51, 12159-12168.	1.0	13
52	Selective Pd ^{II} â€Catalyzed Acylation of Pyrrole with Aldehydes. Application to the Synthesis of Celastramycin Analogues and Tolmetin. European Journal of Organic Chemistry, 2020, 2020, 4284-4295.	1.2	13
53	Phenolic Activation in Chiral Br \tilde{A} , nsted Acid-Catalyzed Intramolecular $\hat{I}\pm$ -Amidoalkylation Reactions for the Synthesis of Fused Isoquinolines. ACS Omega, 2017, 2, 2706-2718.	1.6	12
54	Stereocontrolled conjugate additions to dihydroindolizinone systems. Synthesis of enantiopure polysubstituted tetrahydropyrrolo[2,1-a]isoquinolones. Tetrahedron, 2009, 65, 5787-5798.	1.0	11

#	Article	IF	CITATIONS
55	RCM Approach to Complex Polycyclic $\hat{l}\pm\hat{a}\in H$ ydroxy $\hat{l}^3\hat{a}\in L$ actams: Synthesis of Indolizinones and Pyrroloazepinones. European Journal of Organic Chemistry, 2013, 2013, 6722-6732.	1.2	11
56	Intramolecular Carbolithiation Reactions in the Construction of Mediumâ€Sized Rings. Synthesis of Pyrroloisoquinolines, Benzazepines, and Benzazocines. European Journal of Organic Chemistry, 2013, 2013, 1460-1470.	1.2	11
57	Intramolecular Mizoroki–Heck Reaction in the Regioselective Synthesis of 4â€Alkylideneâ€ŧetrahydroquinolines. European Journal of Organic Chemistry, 2013, 2013, 3013-3022.	1.2	11
58	Palladium-Catalyzed Dehydrogenative Coupling: An Efficient Synthetic Strategy for the Construction of the Quinoline Core. Marine Drugs, 2017, 15, 276.	2.2	11
59	Palladium-mediated synthesis and biological evaluation of C-10b substituted Dihydropyrrolo[1,2-b]isoquinolines as antileishmanial agents. European Journal of Medicinal Chemistry, 2021, 220, 113458.	2.6	11
60	Application of the <i>ortho</i> â€ithiationâ€cyclization strategy to <i>N</i> â€benzylâ€and <i>N</i> â€phenethylamine derivatives. Journal of Heterocyclic Chemistry, 1995, 32, 1751-1758.	1.4	10
61	Generation of Tertiary and Quaternary Stereocentres through Palladiumâ€Catalysed Intramolecular Heckâ€Type Reactions for the Stereocontrolled Synthesis of Pyrrolo[1,2â€<1>b]isoquinolines. European Journal of Organic Chemistry, 2016, 2016, 2054-2063.	1.2	9
62	Intramolecular Palladium(II)-Catalyzed 6- <i>endo</i> C–H Alkenylation Directed by the Remote <i>N</i> -Protecting Group: Mechanistic Insight and Application to the Synthesis of Dihydroquinolines. Journal of Organic Chemistry, 2020, 85, 2486-2503.	1.7	9
63	A Direct Route to Erythrinanes v i a α-Amidoalkylation, Conjugate Addition and Ring-Closing Metathesis Reactions. Letters in Organic Chemistry, 2004, 1, 323-325.	0.2	8
64	Palladium-catalyzed oxidative arene C–H alkenylation reactions involving olefins. Trends in Chemistry, 2022, 4, 495-511.	4.4	8
65	Carbopalladation/Suzuki Coupling Cascade for the Generation of Quaternary Centers: Access to Pyrrolo[1,2- <i>b</i>) jisoquinolines. Journal of Organic Chemistry, 2019, 84, 10183-10196.	1.7	7
66	Synthesis of Tetrahydroquinolines through Intramolecular Carbolithiation Reactions. Heterocycles, 2014, 88, 425.	0.4	7
67	Pd(II)-Catalyzed Fujiwara–Moritani Reactions for the Synthesis and Functionalization of Substituted Coumarins. ACS Omega, 2021, 6, 29483-29494.	1.6	6
68	Synthesis, crystal structure determination and pharmacological activity of 7,8,3′,4′â€ŧetramethoxyisoflavone. Journal of Heterocyclic Chemistry, 1991, 28, 1885-1889.	1.4	5
69	Molecular docking, SAR analysis and biophysical approaches in the study of the antibacterial activity of ceramides isolated from Cissus incisa. Bioorganic Chemistry, 2021, 109, 104745.	2.0	5
70	Markov Entropy Centrality: Chemical, Biological, Crime, and Legislative Networks., 2011,, 199-258.		5
71	Synthesis of Pyrrolo[1,2- <i>b</i>) isoquinolines through Mesityllithium-Mediated Intramolecular Carbolithiation. Synlett, 2008, 2008, 3188-3192.	1.0	4
72	Intramolecular Addition of Heteroaryllithium Compounds onto Activated Alkenes: Access to Heterofused Indolizines and Pyrroloazepines. European Journal of Organic Chemistry, 2017, 2017, 2462-2468.	1.2	4

#	Article	IF	CITATIONS
73	MCDCalc: Markov Chain Molecular Descriptors Calculator for Medicinal Chemistry. Current Topics in Medicinal Chemistry, 2020, 20, 305-317.	1.0	4
74	Diastereoselective Conjugate Addition of \hat{l} ±-Lithiodithioacetals to the \hat{l} ±, \hat{l} 2-Unsaturated Lactam Unit of 5,6-Dihydropyrrolo[2,1-a]isoquinolinones. Synlett, 1999, 1999, 1486-1488.	1.0	2
75	Editorial (Thematic Issue: Enantioselective Synthesis in Organic and Medicinal Chemistry). Current Topics in Medicinal Chemistry, 2014, 14, 1209-1211.	1.0	2
76	Access to Apoerysopine and Pratosine Skeletons via Intramolecular Carbolithiation and Palladium-Catalyzed Alkenylation Reactions. Heterocycles, 2016, 93, 114.	0.4	2
77	Transition metal-guanidine complexes as catalysts in organic reactions. Recent developments. Arkivoc, 2021, 2020, 158-179.	0.3	2
78	Microwave-assisted palladium catalysed C–H acylation with aldehydes: synthesis and diversification of 3-acylthiophenes. Organic and Biomolecular Chemistry, 2022, 20, 852-861.	1.5	2
79	An Efficient Entry to Pyrrolo[1,2-b]isoquinolines and Related Systems Through Parham Cyclization ChemInform, 2005, 36, no.	0.1	1
80	Stereoselective Conjugate Additions to \hat{I}^3 -Lactams: Synthesis of Polysubstituted Benzo-Fused Indolizidine Systems. Synlett, 2007, 2007, 1101-1105.	1.0	1
81	C-10b Functionalized 5,6-dihydropyrrolo[2,1-a]isoquinolines as intermediates in the synthesis of erythrinane systems. Intra- vs. intermolecular conjugate addition based strategies. Arkivoc, 2007, 2007, 206-219.	0.3	1
82	Parham-Type Cycliacylation with Weinreb Amides. Application to the Synthesis of Fused Indolizinone Systems ChemInform, 2003, 34, no.	0.1	0
83	A Practical Approach to the Fused \hat{I}^2 -Carboline System. Asymmetric Synthesis of Indolo[2,3-a]indolizidinones via a Diastereoselective Intramolecular $\hat{I}\pm$ -Amidoalkylation Reaction ChemInform, 2004, 35, no.	0.1	0
84	Enantiodivergent Synthesis of Pyrrolo $[2,1-a]$ is oquinolines Based on Diastereoselective Parham Cyclization and $\hat{l}\pm$ -Amidoalkylation Reactions ChemInform, 2004, 35, no.	0.1	0
85	DITOX derived α-sulfinyl carbanion as nucleophile in conjugate addition reactions to pyrrolo[2,1-a]isoquinolones. Arkivoc, 2009, 2010, 45-55.	0.3	0
86	Organolithium or Heck type cyclization of N-ortho-iodobenzyl-2-alkenylpyrrolidines to give indolizidines. Arkivoc, 2011, 2011, 57-66.	0.3	0
87	C-N bond forming reactions in the synthesis of substituted 2-aminoimidazole derivatives. Arkivoc, 2014, 2014, 44-56.	0.3	0