Harold J W Zandvliet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/865521/publications.pdf

Version: 2024-02-01

297 papers

7,951 citations

57758 44 h-index 76900 74 g-index

304 all docs

304 docs citations

times ranked

304

7397 citing authors

#	ARTICLE Spectroscopic signature or surface states and bunching of bulk subbands in topological insulator () 1] E1Qq1 1 0	IF 784314 rg	CITATIONS BT/Overlock
1		3.2	0
2	Transition in the growth mode of plasmonic bubbles in binary liquids. Soft Matter, 2022, 18, 4136-4145.	2.7	1
3	Low coverage disordered decanethiol monolayers on Au(001): A conjecture regarding the formation of Au-adatom-molecule complexes. Applied Surface Science, 2022, 594, 153364.	6.1	2
4	Germanene., 2022,, 27-48.		0
5	Droplet dissolution driven by emerging thermal gradients and Marangoni flow. Physical Review Fluids, 2022, 7, .	2.5	O
6	Microscopic Study of the Spinodal Decomposition of Supported Eutectic Droplets During Cooling: PtGe/Ge{110}. Journal of Physical Chemistry C, 2022, 126, 11285-11297.	3.1	2
7	Strong Fermi-Level Pinning in GeS–Metal Nanocontacts. Journal of Physical Chemistry C, 2022, 126, 11400-11406.	3.1	3
8	Determination of the Fermi velocity of graphene on MoS2 using dual mode scanning tunneling spectroscopy. Applied Physics Letters, 2021, 118, 163103.	3.3	6
9	Valley-protected one-dimensional states in small-angle twisted bilayer graphene. Physical Review B, 2021, 103, .	3.2	14
10	Confined Friedel oscillations on $Au(111)$ terraces probed by thermovoltage scanning tunneling microscopy. Physical Review B, 2021, 103, .	3.2	3
11	Dual modulation STM: Simultaneous high-resolution mapping of the differential conductivity and local tunnel barrier height demonstrated on Au(111). Journal of Applied Physics, 2021, 129, 225301.	2.5	0
12	Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
13	Droplet plume emission during plasmonic bubble growth in ternary liquids. Physical Review E, 2021, 104, 025101.	2.1	3
14	Robustness of surfactant-laden latex films. Progress in Organic Coatings, 2021, 160, 106502.	3.9	1
15	Containerless metal single-crystal growth via electromagnetic levitation. Review of Scientific Instruments, 2021, 92, 105105.	1.3	2
16	Detailed characterization of supported eutectic droplets using photoemission electron microscopy. Physical Review Materials, 2021, 5, .	2.4	4
17	Shining new light on the motion of eutectic droplets across surfaces: A PEEM study of PtGe on Ge(110). Physical Review Materials, $2021, 5, .$	2.4	3
18	Anchoring and packing of self-assembled monolayers of <i>semithio</i> -bambusurils on Au(111). Molecular Systems Design and Engineering, 2020, 5, 511-520.	3.4	2

#	Article	IF	CITATIONS
19	Plasmonic Bubble Nucleation in Binary Liquids. Journal of Physical Chemistry C, 2020, 124, 2591-2597.	3.1	7
20	Nanoscale Work Function Contrast Induced by Decanethiol Self-Assembled Monolayers on Au(111). Langmuir, 2020, 36, 12745-12754.	3.5	9
21	Free energy of domain walls and order-disorder transition in a triangular lattice with anisotropic nearest-neighbor interactions. Physical Review E, 2020, 102, 032138.	2.1	4
22	Plasmonic Microbubble Dynamics in Binary Liquids. Journal of Physical Chemistry Letters, 2020, 11, 8631-8637.	4.6	10
23	On the mystery of the absence of a spin-orbit gap in scanning tunneling microscopy spectra of germanene. Journal of Semiconductors, 2020, 41, 082003.	3.7	5
24	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>Germanium</mml:mtext><mml:mo>/</mml:mo></mml:math></pre>	:m 3.2 <mm< td=""><td>ıl:n¶sub><mm< td=""></mm<></td></mm<>	ıl:n¶sub> <mm< td=""></mm<>
25	Structural Stability of Physisorbed Air-Oxidized Decanethiols on Au(111). Journal of Physical Chemistry C, 2020, 124, 11977-11984.	3.1	9
26	Image potential states of germanene. 2D Materials, 2020, 7, 035021.	4.4	25
27	Gas–Vapor Interplay in Plasmonic Bubble Shrinkage. Journal of Physical Chemistry C, 2020, 124, 5861-5869.	3.1	22
28	Singularities and topologically protected states in twisted bilayer graphene. Applied Physics Letters, 2020, 116, 011602.	3.3	12
29	Identification of Semiconductive Patches in Thermally Processed Monolayer Oxoâ€Functionalized Graphene. Angewandte Chemie - International Edition, 2020, 59, 13657-13662.	13.8	31
30	Giant plasmonic bubbles nucleation under different ambient pressures. Physical Review E, 2020, 102, 063109.	2.1	7
31	Evaporation of Dilute Sodium Dodecyl Sulfate Droplets on a Hydrophobic Substrate. Langmuir, 2019, 35, 10453-10460.	3.5	17
32	Stoichiometric edges during the intrinsic growth of hexagonal boron nitride on Ir(111). New Journal of Physics, 2019, 21, 092001.	2.9	5
33	Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air. Journal of Physical Chemistry C, 2019, 123, 23586-23593.	3.1	29
34	Self-assembly and wetting properties of gold nanorod–CTAB molecules on HOPG. Beilstein Journal of Nanotechnology, 2019, 10, 696-705.	2.8	21
35	Charge puddles in germanene. Applied Physics Letters, 2019, 114, 041601.	3.3	11
36	Environmentally Controlled Charge Carrier Injection Mechanisms of Metal/WS2 Junctions. Journal of Physical Chemistry Letters, 2019, 10, 2578-2584.	4.6	10

#	Article	IF	Citations
37	Nanoscale imaging of electric pathways in epitaxial graphene nanoribbons. Nano Research, 2019, 12, 1697-1702.	10.4	3
38	Tuning the Friction of Graphene on Mica by Alcohol Intercalation. Langmuir, 2019, 35, 4886-4892.	3.5	10
39	Control of the metal/WS ₂ contact properties using 2-dimensional buffer layers. Nanoscale, 2019, 11, 5548-5556.	5.6	16
40	Polar edges and their consequences for the structure and shape of hBN islands. 2D Materials, 2019, 6, 035010.	4.4	7
41	Structural and electronic properties of the α-GeSe surface. Surface Science, 2019, 686, 17-21.	1.9	4
42	Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides. Journal of Physical Chemistry C, 2019, 123, 5411-5420.	3.1	124
43	Barrier Inhomogeneities in Atomic Contacts on WS ₂ . Nano Letters, 2019, 19, 1190-1196.	9.1	14
44	Quantum size stabilization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ge</mml:mi><mml:nanofilms .<="" 2019,="" 3,="" ge(001).="" materials,="" on="" physical="" review="" th=""><th>nn23k/mn</th><th>กl:เชก> </th></mml:nanofilms></mml:msub></mml:mrow></mml:math>	nn 23 k/mn	ก l:เช ก>
45	Zipping-Depinning: Dissolution of Droplets on Micropatterned Concentric Rings. Langmuir, 2018, 34, 5396-5402.	3.5	10
46	Bandgap opening in hydrogenated germanene. Applied Physics Letters, 2018, 112, .	3.3	26
47	Local Conduction in Mo _{<i>x</i>} W _{1â€"<i>x</i>} Se ₂ : The Role of Stacking Faults, Defects, and Alloying. ACS Applied Materials & Stacking Faults, Defects, and Alloying. ACS Applied Materials & Stacking Faults, Defects, and Alloying. ACS Applied Materials & Stacking Faults, Defects, and Alloying. ACS Applied Materials & Stacking Faults, Defects, and Alloying. ACS Applied Materials & Stacking Faults, Defects, and Alloying. ACS Applied Materials & Stacking Faults, Defects, and Alloying. ACS Applied Materials & Stacking Faults, Defects, and Alloying. ACS Applied Materials & Stacking Faults, Defects, and Alloying. ACS Applied Materials & Stacking Faults, Defects, and Alloying. ACS Applied Materials & Stacking Faults, Defects, Defects, Stacking Faults, Defects,	8.0	24
48	Ordering of Air-Oxidized Decanethiols on Au(111). Journal of Physical Chemistry C, 2018, 122, 8430-8436.	3.1	12
49	Plasmonic Bubbles in <i>n</i> -Alkanes. Journal of Physical Chemistry C, 2018, 122, 28375-28381.	3.1	21
50	Germanene: Silicene's Twin Sister. Nanoscience and Technology, 2018, , 255-267.	1.5	0
51	Ge2Pt hut clusters: A substrate for germanene. Journal of Applied Physics, 2018, 124, .	2.5	12
52	Ballistic tracks in graphene nanoribbons. Nature Communications, 2018, 9, 4426.	12.8	45
53	Nanoscale Investigation of Defects and Oxidation of HfSe ₂ . Journal of Physical Chemistry C, 2018, 122, 25498-25505.	3.1	17
54	Critical vacancy density for melting in two-dimensions: the case of high density Bi on Cu(111). New Journal of Physics, 2018, 20, 083045.	2.9	0

#	Article	IF	Citations
55	Giant and explosive plasmonic bubbles by delayed nucleation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7676-7681.	7.1	76
56	Combined I(V) and dI(V)/dz scanning tunneling spectroscopy. AIP Advances, 2018, 8, 075013.	1.3	5
57	Entrapment and Dissolution of Microbubbles Inside Microwells. Langmuir, 2018, 34, 10659-10667.	3.5	15
58	Vapor and Gas-Bubble Growth Dynamics around Laser-Irradiated, Water-Immersed Plasmonic Nanoparticles. ACS Nano, 2017, 11, 2045-2051.	14.6	93
59	Graphene Visualizes the Ion Distribution on Air-Cleaved Mica. Scientific Reports, 2017, 7, 43451.	3.3	30
60	Ordinary and supernumerary resonant scattering of low energy electrons from the BiCu2(111) surface alloy. New Journal of Physics, 2017, 19, 013024.	2.9	2
61	Defect Dominated Charge Transport and Fermi Level Pinning in MoS ₂ /Metal Contacts. ACS Applied Materials & Interfaces, 2017, 9, 19278-19286.	8.0	177
62	Alloying, Dealloying, and Reentrant Alloying in (Sub)monolayer Growth of Ag on Pt(111). Journal of Physical Chemistry C, 2017, 121, 8353-8363.	3.1	2
63	Segregation in dissolving binary-component sessile droplets. Journal of Fluid Mechanics, 2017, 812, 349-369.	3.4	15
64	Charge Induced Dynamics of Water in a Graphene–Mica Slit Pore. Langmuir, 2017, 33, 11977-11985.	3. 5	15
65	Step-edge Induced Orientation of Nanorods in Evaporative Self-assembly on HOPG. Colloids and Interface Science Communications, 2017, 19, 25-30.	4.1	5
66	Pressure-Induced Melting of Confined Ice. ACS Nano, 2017, 11, 12723-12731.	14.6	38
67	Spatially resolved electronic structure of twisted graphene. Physical Review B, 2017, 95, .	3.2	5
68	Chemical vapor deposition growth of bilayer graphene in between molybdenum disulfide sheets. Journal of Colloid and Interface Science, 2017, 505, 776-782.	9.4	8
69	Special issue on low-dimensional order mediated by interfaces. Journal of Physics Condensed Matter, 2017, 29, 100301.	1.8	0
70	Elemental Two-Dimensional Materials Beyond Graphene. ChemistrySelect, 2017, 2, .	1.5	0
71	Intercalation of Si between MoS ₂ layers. Beilstein Journal of Nanotechnology, 2017, 8, 1952-1960.	2.8	27
72	Determining the energetics of vicinal perovskite oxide surfaces. AIP Advances, 2017, 7, 055302.	1.3	1

#	Article	IF	Citations
73	Scanning tunneling spectroscopy study of the Dirac spectrum of germanene. Journal of Physics Condensed Matter, 2016, 28, 284006.	1.8	16
74	Growth of silicon on tungsten diselenide. Applied Physics Letters, 2016, 109, 243105.	3.3	7
75	A method to measure the thermovoltage with a high spatial resolution. Applied Physics Letters, 2016, 108, .	3.3	4
76	Coarsening dynamics of ice crystals intercalated between graphene and supporting mica. Applied Physics Letters, 2016, 108, .	3.3	17
77	Electronic end-states in platinum atom chains. Surface Science, 2016, 644, 91-94.	1.9	1
78	Role of natural convection in the dissolution of sessile droplets. Journal of Fluid Mechanics, 2016, 794, 45-67.	3.4	46
79	Electrochemical atomic force microscopy reveals potential stimulated height changes of redox responsive Cu-azurin on gold. European Polymer Journal, 2016, 83, 529-537.	5.4	10
80	Collective and convective effects compete in patterns of dissolving surface droplets. Soft Matter, 2016, 12, 5787-5796.	2.7	37
81	Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure. Physical Review B, $2016, 93, .$	3.2	13
82	Structural and Electronic Properties of Germanene on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2016, 116, 256804.	7.8	329
83	Hydrophobic Ice Confined between Graphene and MoS ₂ . Journal of Physical Chemistry C, 2016, 120, 27079-27084.	3.1	71
84	Structure and Dynamics of Confined Alcohol–Water Mixtures. ACS Nano, 2016, 10, 6762-6768.	14.6	36
85	Hydrodynamic confinement and capillary alignment of gold nanorods. Nanotechnology, 2016, 27, 025301.	2.6	8
86	Visualization of steps and surface reconstructions in Helium Ion Microscopy with atomic precision. Ultramicroscopy, 2016, 162, 17-24.	1.9	9
87	Electrochemically Induced Nanobubbles between Graphene and Mica. Langmuir, 2016, 32, 6582-6590.	3.5	17
88	Potential of lattice Boltzmann to model droplets on chemically stripe-patterned substrates. Applied Surface Science, 2016, 361, 122-132.	6.1	20
89	Intramolecular Imaging at Room Temperature. Physics Magazine, 2015, 8, .	0.1	0
90	Latent heat induced rotation limited aggregation in 2D ice nanocrystals. Journal of Chemical Physics, 2015, 143, 034702.	3.0	30

#	Article	IF	CITATIONS
91	Dynamics of copper-phthalocyanine molecules on Au/Ge(001). Journal of Chemical Physics, 2015, 143, 134303.	3.0	8
92	Closed-loop conductance scanning tunneling spectroscopy: demonstrating the equivalence to the open-loop alternative. Beilstein Journal of Nanotechnology, 2015, 6, 1116-1124.	2.8	2
93	Colloidal Route to Bio-inspired Hierarchical Superhydrophobic Substrates. Materials Today: Proceedings, 2015, 2, 5450-5454.	1.8	O
94	Water-Induced Blister Formation in a Thin Film Polymer. Langmuir, 2015, 31, 1017-1025.	3.5	24
95	Mixed mode of dissolving immersed nanodroplets at a solid–water interface. Soft Matter, 2015, 11, 1889-1900.	2.7	65
96	Hydrophobic surfaces with tunable dynamic wetting properties via colloidal assembly of silica microspheres and gold nanoparticles. Journal of Sol-Gel Science and Technology, 2015, 74, 357-367.	2.4	12
97	The influence of instrumental parameters on the adhesion force in a flat-on-rough contact geometry. Applied Surface Science, 2015, 353, 1285-1290.	6.1	25
98	Step free energy of an arbitrarily oriented step on a rectangular lattice with nearest-neighbor interactions. Surface Science, 2015, 639, L1-L4.	1.9	6
99	Ordering and dynamics of oligo(phenylene ethynylene) self-assembled monolayers on Au(111). RSC Advances, 2015, 5, 42069-42074.	3.6	6
100	Evaporative gold nanorod assembly on chemically stripe-patterned gradient surfaces. Journal of Colloid and Interface Science, 2015, 449, 261-269.	9.4	11
101	Stick-Jump Mode in Surface Droplet Dissolution. Langmuir, 2015, 31, 4696-4703.	3.5	48
102	Two-dimensional Dirac signature of germanene. Applied Physics Letters, 2015, 107, .	3.3	67
103	<i>In situ</i> spectroscopy of intrinsic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mi .<="" 2015,="" 92,="" and="" b,="" defects.="" extrinsic="" films="" impact="" insulator="" of="" physical="" review="" th="" thin=""><th>1>22/mml</th><th>:n89> </th></mml:mi></mml:msub></mml:mrow></mml:math>	1> 22 /mml	:n 89 >
104	Germanene: the germanium analogue of graphene. Journal of Physics Condensed Matter, 2015, 27, 443002.	1.8	304
105	Evaporation of elongated droplets on chemically stripe-patterned surfaces. International Journal of Heat and Mass Transfer, 2015, 82, 537-544.	4.8	36
106	Investigation of ionoluminescence of semiconductor materials using helium ion microscopy. Journal of Luminescence, 2015, 157, 321-326.	3.1	14
107	Single-Molecule Devices., 2015,, 1-36.		0
108	Germanene termination of Ge ₂ Pt crystals on Ge(110). Journal of Physics Condensed Matter, 2014, 26, 442001.	1.8	145

#	Article	IF	CITATIONS
109	Spinodal decomposition driven formation of Pt-nanowires on Ge(001). New Journal of Physics, 2014, 16, 113052.	2.9	6
110	Creation and physical aspects of luminescent patterns using helium ion microscopy. Journal of Applied Physics, 2014, 115 , .	2.5	11
111	Desorption of oxygen from alloyed Ag/Pt(111). Journal of Chemical Physics, 2014, 140, 234705.	3.0	5
112	Temperature-dependent formation and evolution of the interfacial dislocation network of Ag/Pt(111). Physical Review B, 2014, 89, .	3.2	7
113	Droplet impact on hydrophobic surfaces with hierarchical roughness. Surface Topography: Metrology and Properties, 2014, 2, 035002.	1.6	13
114	The influence of instrumental parameters on the adhesion force in a flat-on-flat contact geometry. Applied Surface Science, 2014, 308, 106-112.	6.1	25
115	Supramolecular Structure of Self-Assembled Monolayers of Ferrocenyl Terminated <i>n</i> -Alkanethiolates on Gold Surfaces. Langmuir, 2014, 30, 13447-13455.	3.5	30
116	Transition voltage spectroscopy of scanning tunneling microscopy vacuum junctions. RSC Advances, 2014, 4, 32438.	3.6	17
117	Dynamics of oligo(phenylene-ethynylene) self-assembled monolayers on Au(1 1 1). Chemical Physics Letters, 2014, 614, 45-48.	2.6	5
			·
118	Can a silicene transistor be realized?. Nano Today, 2014, 9, 691-694.	11.9	26
118	Can a silicene transistor be realized?. Nano Today, 2014, 9, 691-694. Exposing nanobubble-like objects to a degassed environment. Soft Matter, 2014, 10, 4947.	2.7	70
119	Exposing nanobubble-like objects to a degassed environment. Soft Matter, 2014, 10, 4947.	2.7	70
119	Exposing nanobubble-like objects to a degassed environment. Soft Matter, 2014, 10, 4947. Shape of Picoliter Droplets on Chemically Striped Patterned Substrates. Langmuir, 2014, 30, 11574-11581.	2.7 3.5	70 33
119 120 121	Exposing nanobubble-like objects to a degassed environment. Soft Matter, 2014, 10, 4947. Shape of Picoliter Droplets on Chemically Striped Patterned Substrates. Langmuir, 2014, 30, 11574-11581. Shape-Induced Separation of Nanospheres and Aligned Nanorods. Langmuir, 2014, 30, 7953-7961.	2.7 3.5 3.5	70 33 35
119 120 121 122	Exposing nanobubble-like objects to a degassed environment. Soft Matter, 2014, 10, 4947. Shape of Picoliter Droplets on Chemically Striped Patterned Substrates. Langmuir, 2014, 30, 11574-11581. Shape-Induced Separation of Nanospheres and Aligned Nanorods. Langmuir, 2014, 30, 7953-7961. Electronic and energetic properties of Ge(110) pentagons. Surface Science, 2014, 626, 1-5. A high resolution ionoluminescence study of defect creation and interaction. Journal of Physics	2.7 3.5 3.5	70 33 35 16
119 120 121 122	Exposing nanobubble-like objects to a degassed environment. Soft Matter, 2014, 10, 4947. Shape of Picoliter Droplets on Chemically Striped Patterned Substrates. Langmuir, 2014, 30, 11574-11581. Shape-Induced Separation of Nanospheres and Aligned Nanorods. Langmuir, 2014, 30, 7953-7961. Electronic and energetic properties of Ge(110) pentagons. Surface Science, 2014, 626, 1-5. A high resolution ionoluminescence study of defect creation and interaction. Journal of Physics Condensed Matter, 2014, 26, 165401. Research Update: Molecular electronics: The single-molecule switch and transistor. APL Materials,	2.7 3.5 3.5 1.9	70 33 35 16

#	Article	IF	Citations
127	Electronically stabilized nanowire growth. Nature Communications, 2013, 4, 2387.	12.8	32
128	The instability of silicene on Ag(111). Applied Physics Letters, 2013, 103 , .	3.3	79
129	Particle tracking around surface nanobubbles. Journal of Physics Condensed Matter, 2013, 25, 184009.	1.8	16
130	Physics in one dimension. Journal of Physics Condensed Matter, 2013, 25, 010301.	1.8	2
131	In Situ Observation of a Deprotonation-Driven Phase Transformation: 4,4′-Biphenyldicarboxylic Acid on Au(111). Journal of Physical Chemistry C, 2013, 117, 1020-1029.	3.1	15
132	Cobalt containing nano-islands on Ge(111)-c(2×8). Surface Science, 2013, 610, 59-64.	1.9	6
133	Formation and decay of a compressed phase of 4,4′-biphenyldicarboxylic acid on Cu(001). Physical Chemistry Chemical Physics, 2013, 15, 5007.	2.8	8
134	Universal behaviour of domain wall meandering. Journal of Physics Condensed Matter, 2013, 25, 205301.	1.8	4
135	In-situ Observation of Organic Thin Film Growth on Graphene. Springer Series in Materials Science, 2013, , 107-139.	0.6	6
136	Selective metallization by seeded growth on patterned gold nanoparticle arrays. Journal of Applied Physics, 2013, 113, 233510.	2.5	4
137	Dynamics of Decanethiol Self-Assembled Monolayers on Au(111) Studied by Time-Resolved Scanning Tunneling Microscopy. Langmuir, 2013, 29, 2250-2257.	3.5	25
138	Imaging of Ti0.87O2 nanosheets using scanning tunneling spectroscopy. Applied Surface Science, 2013, 265, 201-204.	6.1	6
139	Molecular Dynamics and Energy Landscape of Decanethiolates in Self-Assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy. Langmuir, 2013, 29, 3662-3667.	3.5	23
140	Interfering Bloch waves in a 1D electron system. Journal of Physics Condensed Matter, 2013, 25, 014014.	1.8	4
141	Decoupling of the copper core in a single copperphthalocyanine molecule. Journal of Chemical Physics, 2013, 138, 114302.	3.0	3
142	Innovative gold nanoparticle patterning and selective metallization. Materials Research Society Symposia Proceedings, 2013, 1547, 149-154.	0.1	0
143	Growth Anomalies in Supramolecular Networks: <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>4</mml:mn><mml:mo>,</mml:mo><mml:msup><mml:mn>4</mml:mn><mml:mo>â Acid on Cu(001). Physical Review Letters. 2013. 110. 076101.</mml:mo></mml:msup></mml:math>	€2 ^{7,8} mml:r	no ^{\$}
144	Manipulating transport through a single-molecule junction. Journal of Chemical Physics, 2013, 139, 214709.	3.0	13

#	Article	IF	CITATIONS
145	Dynamics of the wetting-induced nanowire reconstruction of Au/Ge(001). Physical Review B, 2013, 88, .	3.2	15
146	Determining the local density of states in the constant current STM mode. Physical Review B, 2013, 88, .	3.2	14
147	Probing the thermal collapse of PNIPAM grafts by quantitative in situ ellipsometry. Materials Research Society Symposia Proceedings, 2013, 1544, 1.	0.1	0
148	Digging gold: keV He ⁺ ion interaction with Au. Beilstein Journal of Nanotechnology, 2013, 4, 453-460.	2.8	37
149	Phase transformations of 4,4 <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mo>′</mml:mo></mml:msup></mml:math> -biphenyldicarboxylic acid on Cu(001). Physical Review B. 2012. 85	3.2	11
150	Variable-temperature study of the transport through a single octanethiol molecule. Physical Review B, 2012, 86, .	3.2	11
151	Size Fluctuations of Near Critical Nuclei and Gibbs Free Energy for Nucleation of BDA on Cu(001). Physical Review Letters, 2012, 109, 016101.	7.8	13
152	Local probing of coupled interfaces between two-dimensional electron and hole gases in oxide heterostructures by variable-temperature scanning tunneling spectroscopy. Physical Review B, 2012, 86, .	3.2	13
153	The Art of Catching and Probing Single Molecules. Chimia, 2012, 66, 52.	0.6	2
154	Tuning the dipole-directed assembly of core-shell nickel-coated gold nanorods. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	13
155	Probing the Thermal Collapse of Poly(<i>N</i> -isopropylacrylamide) Grafts by Quantitative <i>in Situ</i> Ellipsometry. Journal of Physical Chemistry B, 2012, 116, 9261-9268.	2.6	54
156	The influence of substrate temperature on growth of para-sexiphenyl thin films on Ir{111} supported graphene studied by LEEM. Surface Science, 2012, 606, 475-480.	1.9	21
157	Tuning Kinetics to Control Droplet Shapes on Chemically Striped Patterned Surfaces. Langmuir, 2012, 28, 13137-13142.	3.5	28
158	Origin of the Au/Ge(001) metallic state. Nature Physics, 2012, 8, 697-698.	16.7	16
159	Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip. Applied Surface Science, 2012, 258, 6938-6942.	6.1	51
160	A colloidal route to fabricate hierarchical sticky and non-sticky substrates. Journal of Colloid and Interface Science, 2012, 385, 73-80.	9.4	28
161	Subsurface analysis of semiconductor structures with helium ion microscopy. Microelectronics Reliability, 2012, 52, 2104-2109.	1.7	15
162	Controlled transport through a single molecule. Journal of Physics Condensed Matter, 2012, 24, 082201.	1.8	11

#	Article	IF	CITATIONS
163	Directional Liquid Spreading over Chemically Defined Radial Wettability Gradients. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4141-4148.	8.0	35
164	Growth and decay of hcp-like Cu hut-shaped structures on W(100). Physical Review B, 2012, 85 , .	3.2	4
165	Nonintrusive Optical Visualization of Surface Nanobubbles. Physical Review Letters, 2012, 109, 066102.	7.8	135
166	Simulating Anisotropic Droplet Shapes on Chemically Striped Patterned Surfaces. Langmuir, 2012, 28, 499-505.	3.5	85
167	Channeling in helium ion microscopy: Mapping of crystal orientation. Beilstein Journal of Nanotechnology, 2012, 3, 501-506.	2.8	38
168	Imaging ultra thin layers with helium ion microscopy: Utilizing the channeling contrast mechanism. Beilstein Journal of Nanotechnology, 2012, 3, 507-512.	2.8	33
169	Electronâ€Induced Dynamics of Heptathioether βâ€Cyclodextrin Molecules. Small, 2012, 8, 317-322.	10.0	3
170	Temperature Dependence of Surface Nanobubbles. ChemPhysChem, 2012, 13, 2213-2217.	2.1	39
171	Self-Organized Nanocavity Arrays on Pt/Ge(001). Journal of Physical Chemistry C, 2011, 115, 6726-6729.	3.1	2
172	Localized Plasmons in Noble Metal Nanospheroids. Journal of Physical Chemistry C, 2011, 115, 10321-10332.	3.1	53
173	Knudsen Gas Provides Nanobubble Stability. Physical Review Letters, 2011, 107, 116101.	7.8	114
174	Self-organization of SrRuO3 nanowires on ordered oxide surface terminations. MRS Communications, 2011, 1, 17-21.	1.8	16
175	Smart Design of Stripe-Patterned Gradient Surfaces to Control Droplet Motion. Langmuir, 2011, 27, 11238-11245.	3.5	123
176	Molecular Bridges. Journal of Physical Chemistry C, 2011, 115, 2268-2272.	3.1	14
177	Vacancy-mediated diffusion of Co atoms embedded in Cu(001). Surface Science, 2011, 605, 1956-1961.	1.9	26
178	Surface Bubble Nucleation Stability. Physical Review Letters, 2011, 106, 056101.	7.8	108
179	Novel, highly selective gold nanoparticle patterning on surfaces using pure water. Journal of Colloid and Interface Science, 2011, 364, 304-310.	9.4	10
180	The structural and electronic properties of platinum–germanide on Ge(111). Surface Science, 2011, 605, 507-512.	1.9	3

#	Article	IF	CITATIONS
181	Embedded Co islands on Ge(001). Surface Science, 2011, 605, 1129-1132.	1.9	8
182	A low energy electron microscopy study of the initial growth, structure, and thermal stability of 4,4′-biphenyldicarboxylic acid domains on Cu(001). Journal of Chemical Physics, 2011, 135, 124706.	3.0	9
183	Anomalous Decay of Electronically Stabilized Lead Mesas on Ni(111). Physical Review Letters, 2011, 107, 136103.	7.8	15
184	Metastable droplets on shallow-grooved hydrophobic surfaces. Physical Review E, 2011, 83, 041607.	2.1	24
185	Formation of nanowires and their interaction with atomic steps during growth of Bi on Ni(111). Physical Review B, 2011, 84, .	3.2	0
186	Quantum Size Effect Driven Structure Modifications of Bi Films on Ni(111). Physical Review Letters, 2011, 107, 176102.	7.8	16
187	Quantum size effects on surfaces without a projected bandgap: Pb/Ni(111). New Journal of Physics, 2011, 13, 103025.	2.9	9
188	Time-resolved scanning tunnelling microscopy. Journal of Physics Condensed Matter, 2010, 22, 260301.	1.8	2
189	<i>Colloquium</i> : Time-resolved scanning tunneling microscopy. Reviews of Modern Physics, 2010, 82, 1593-1605.	45.6	60
190	Comment on: "On the stability of bubbles trapped at a solid–liquid interface: A thermodynamical approachâ€, Surface Science, 2010, 604, 476-477.	1.9	11
191	Energetics of highly kinked steps edges. Surface Science, 2010, 604, 1261-1264.	1.9	2
192	Dynamics of Au-induced nanowires on Ge(001). Surface Science, 2010, 604, 2021-2023.	1.9	12
193	Scanning tunneling microscopy/spectroscopy and X-ray absorption spectroscopy studies of co adatoms and nanoislands on highly oriented pyrolytic graphite. , 2010, , .		0
194	Atomic seesaws. Journal of Physics Condensed Matter, 2010, 22, 264004.	1.8	2
195	Study of dynamic processes on semiconductor surfaces using time-resolved scanning tunneling microscopy. Journal of Physics Condensed Matter, 2010, 22, 264007.	1.8	4
196	Parallel Electron-Hole Bilayer Conductivity from Electronic Interface Reconstruction. Physical Review Letters, 2010, 104, 166804.	7.8	102
197	Dynamic Dewetting through Micropancake Growth. Langmuir, 2010, 26, 9640-9644.	3.5	40
198	Adsorption of Cu phthalocyanine on Pt modified Ge(001): A scanning tunneling microscopy study. Physical Review B, 2010, 82, .	3.2	5

#	Article	IF	CITATIONS
199	Hydrogen adsorption configurations on Ge(001) probed with STM. Physical Review B, 2009, 79, .	3.2	16
200	Comment on "New Model System for a One-Dimensional Electron Liquid: Self-OrganizedAtomic Gold Chains on Ge(001)― Physical Review Letters, 2009, 103, 209701; discussion 209702.	7.8	18
201	Self-lacing atom chains. Journal of Physics Condensed Matter, 2009, 21, 474207.	1.8	14
202	Fieldâ€Emission Resonances at Tip/ <i>α</i> , <i>ω</i> â€Mercaptoalkyl Ferrocene/Au Interfaces Studied by STM. Small, 2009, 5, 496-502.	10.0	33
203	Scanning Tunneling Spectroscopy. Annual Review of Analytical Chemistry, 2009, 2, 37-55.	5.4	85
204	Structural and Electronic Properties of Au Induced Nanowires on Ge(001). Journal of Physical Chemistry C, 2009, 113, 17156-17159.	3.1	25
205	Transport through a Single Octanethiol Molecule. Nano Letters, 2009, 9, 1147-1151.	9.1	44
206	Playing Pinball with Atoms. Nano Letters, 2009, 9, 1733-1736.	9.1	31
207	Electrolytically Generated Nanobubbles on Highly Orientated Pyrolytic Graphite Surfaces. Langmuir, 2009, 25, 1466-1474.	3.5	116
208	Peierls instability in Pt chains on Ge(001). Surface Science, 2008, 602, 1731-1735.	1.9	53
209	Correlation between geometry and nanobubble distribution on HOPG surface. Europhysics Letters, 2008, 81, 64006.	2.0	80
210	Giant missing row reconstruction of Au on Ge(001). Physical Review B, 2008, 78, .	3.2	55
211	Spatial mapping of the inverse decay length using scanning tunneling microscopy. Applied Physics Letters, 2008, 92, 174101.	3.3	13
212	Remarkably long-ranged repulsive interaction between adsorbed CO molecules on Pt modified Ge(001). Physical Review B, 2008, 78, .	3.2	12
213	Metal induced gap states on Pt-modified Ge(001) surfaces. New Journal of Physics, 2007, 9, 449-449.	2.9	3
214	Controlled damaging and repair of self-organized nanostructures by atom manipulation at room temperature. Nanotechnology, 2007, 18, 365305.	2.6	8
215	Formation of atomic Pt chains on Ge(001) studied by scanning tunneling microscopy. Physical Review B, 2007, 76, .	3.2	29
216	Bistability in the Shape Transition of Strained Islands. Physical Review Letters, 2007, 99, 136103.	7.8	27

#	Article	IF	CITATIONS
217	Characterization of Nanobubbles on Hydrophobic Surfaces in Water. Langmuir, 2007, 23, 7072-7077.	3.5	205
218	Template-Directed Self-Assembly of Alkanethiol Monolayers:Â Selective Growth on Preexisting Monolayer Edges. Langmuir, 2007, 23, 1141-1146.	3.5	5
219	The anisotropic 3D Ising model. Phase Transitions, 2007, 80, 981-986.	1.3	7
220	Dynamics or Stochastic Conductance Switching of Phenylene–Ethynylene Oligomers?. ChemPhysChem, 2007, 8, 661-665.	2.1	14
221	Rectification behaviour of molecular layers on Si(111). Solid State Communications, 2007, 141, 645-648.	1.9	5
222	Negative differential resistance of TEMPO molecules on Si(111). Applied Surface Science, 2007, 253, 4066-4071.	6.1	11
223	The 2D Ising square lattice with nearest- and next-nearest-neighbor interactions. Europhysics Letters, 2006, 73, 747-751.	2.0	34
224	Energetics and dynamics of Cu(001)-c(2×2)Cl steps. Journal of Applied Physics, 2006, 99, 123506.	2.5	2
225	Oxidized Gold as an Ultrathin Etch Resist Applied in Microcontact Printing. Journal of the American Chemical Society, 2006, 128, 15560-15561.	13.7	4
226	Ink Dependence of Poly(dimethylsiloxane) Contamination in Microcontact Printing. Langmuir, 2006, 22, 5945-5951.	3.5	33
227	Edge Transfer Lithography Using Alkanethiol Inks. Nano Letters, 2006, 6, 1235-1239.	9.1	36
228	Spatial Mapping of the Electronic States of a One-Dimensional System. Nano Letters, 2006, 6, 1439-1442.	9.1	27
229	Room-Temperature Single-Electron Tunneling in Dendrimer-Stabilized Gold Nanoparticles Anchored at a Molecular Printboard. Small, 2006, 2, 1422-1426.	10.0	24
230	Diffusion and binding of CO on Pt nanowires. Surface Science, 2006, 600, 4690-4693.	1.9	19
231	Influence of dimer buckling on dimer diffusion: A scanning tunneling microscopy study. Physical Review B, 2006, 73, .	3.2	4
232	Dynamics and Energetics of Ge(001) Dimers. Physical Review Letters, 2006, 97, 266104.	7.8	36
233	The 2D Ising square lattice with nearest- and next-nearest-neighbor interactions. Europhysics Letters, 2006, 74, 1123-1124.	2.0	10
234	Free energies of steps on (111) fcc surfaces. Solid State Communications, 2005, 136, 356-359.	1.9	3

#	Article	IF	Citations
235	Genetic algorithm for finding the reconstruction of semiconductor surfaces. Surface Science, 2005, 577, 93-94.	1.9	3
236	A quantitative evaluation of the dimer concentration during the $(2\tilde{A}-1)$ - $(1\tilde{A}-1)$ phase transition on Ge(001). Surface Science, 2005, 574, L23-L28.	1.9	7
237	Noble Metal Nanoparticles Deposited on Self-Assembled Monolayers by Pulsed Laser Deposition Show Coulomb Blockade at Room Temperature. Small, 2005, 1, 395-398.	10.0	22
238	Thermal roughening of {001} surfaces. Physical Review B, 2005, 72, .	3.2	3
239	Quantum Confinement between Self-Organized Pt Nanowires on Ge(001). Physical Review Letters, 2005, 95, 116801.	7.8	98
240	Coulomb blockade of small Pd clusters. Journal of Chemical Physics, 2005, 123, 044703.	3.0	16
241	Chemically Patterned Flat Stamps for Microcontact Printing. Journal of the American Chemical Society, 2005, 127, 10344-10349.	13.7	48
242	Faceting of ã€^010〉 steps on Si(001) and Ge(001) surfaces. Physical Review B, 2004, 69, .	3.2	7
243	Electronic Properties of $(2\tilde{A}-1)$ and $(4\tilde{A}-2)$ Domains on Ge (001) Studied by Scanning Tunneling Spectroscopy. Physical Review Letters, 2004, 93, 066101.	7.8	64
244	Initial stages of Ptgrowth on Ge (001) studied by scanning tunneling microscopy and density functional theory. Physical Review B, 2004, 70, .	3.2	26
245	Kinetic growth manipulation of Si(001) homoepitaxy. Surface Science, 2004, 552, 35-45.	1.9	8
246	Comment on: $\hat{a} \in \infty(2\tilde{A}-1)$ - $(1\tilde{A}-1)$ phase transition on Ge(001): quasi-chemical approximation and Monte Carlo simulations $\hat{a} \in \infty$ [Surface Science 563 (2004) 99 $\hat{a} \in \infty$ [Surface Science, 2004, 573, 327-331.	1.9	2
247	Coexistence of $(2\tilde{A}-1)$ and $c(4\tilde{A}-2)$ phases on Ge(001). Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 326, 457-461.	2.1	10
248	Overhangs in the solid-on-solid model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 333, 142-145.	2.1	1
249	Spreading of 16-Mercaptohexadecanoic Acid in Microcontact Printing. Langmuir, 2004, 20, 8646-8651.	3.5	24
250	Inelastic Electron Tunneling Spectroscopy on Decanethiol at Elevated Temperatures. Nano Letters, 2004, 4, 2393-2395.	9.1	39
251	The Ge(001) surface. Physics Reports, 2003, 388, 1-40.	25.6	209
252	Comment on "Electronic structure of the high-temperature Ge(001) surface studied by valence band photo-emission―[Surface Science 537 (2003) L423–L428]. Surface Science, 2003, 547, 452-456.	1.9	2

#	Article	IF	CITATIONS
253	Diffusion on semiconductor group IV (0 0 1) surfaces. Chemical Physics of Solid Surfaces, 2003, , 331-350.	0.3	0
254	Diffusion of Si and Ge dimers on Ge (001) surfaces. Journal of Applied Physics, 2003, 93, 1452-1456.	2.5	11
255	$(2\tilde{A}-1)\hat{a}^{2}(1\tilde{A}-1)$ Phase Transition on Ge(001): Dimer Breakup and Surface Roughening. Physical Review Letters, 2003, 91, 116102.	7.8	18
256	Self-organized, one-dimensional Pt nanowires on Ge(001). Applied Physics Letters, 2003, 83, 4610-4612.	3.3	139
257	Free energy and stiffness of ã€^110〉 and ã€^010〉 steps on a (001) surface of a cubic lattice: Revival of the solid-on-solid model. Physical Review B, 2003, 68, .	⁸ 3.2	25
258	Two-dimensional equilibrium island shape and step free energies of Cu(001). Physical Review B, 2003, 67,	3.2	19
259	Antiphase boundary network: A route to extract the island nucleation density. Journal of Applied Physics, 2002, 92, 5785-5787.	2.5	4
260	Surface Stress Anisotropy of Ge(001). Physical Review Letters, 2002, 88, 196105.	7.8	25
261	Diffusion of Dimers on Silicon and Germanium (001) Surfaces. , 2002, , 75-85.		0
262	Diffusion on Semiconductor Surfaces. Physics Today, 2001, 54, 40-45.	0.3	23
263	Adatom assisted stabilization of ad dimers on Ge(001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1868-1870.	2.1	3
264	Temperature dependence of the step free energy. Physical Review B, 2001, 64, .	3.2	23
265	Diffusion Driven Concerted Motion of Surface Atoms: Ge on Ge(001). Physical Review Letters, 2000, 84, 1523-1526.	7.8	34
266	Formation and decay of metastable Ge clusters on Ge(001). Physical Review B, 2000, 62, 7206-7212.	3.2	29
267	Determination of Ge(001) step free energies. Physical Review B, 2000, 61, 9972-9974.	3.2	34
268	Energetics of Si(001). Reviews of Modern Physics, 2000, 72, 593-602.	45.6	140
269	Determination of surface stress anisotropy from domain wall fluctuations. Physical Review B, 1999, 59, 7289-7292.	3.2	9
270	SURFACE MORPHOLOGY OF ION BOMBARDED Si(001) AND Ge(001) SURFACES. Series on Directions in Condensed Matter Physics, 1999, , 485-498.	0.1	O

#	Article	IF	Citations
271	Energetics and Structure of the Stable and Unstable Biatomic Step Edges of Si(100). Surface Review and Letters, 1998, 05, 15-20.	1.1	14
272	Diffusion mechanisms and the nature of Si ad-dimers on Ge(001). Physical Review B, 1998, 58, 16167-16171.	3.2	21
273	STM tip-induced creation and annihilation of small Ge clusters and missing dimer vacancies on Ge(001). Physical Review B, 1998, 57, 1356-1358.	3.2	8
274	Spontaneous formation of an orderedc $(4\tilde{A}-2)\hat{a}^{(2\tilde{A}-1)}$ domain pattern on Ge (001). Physical Review B, 1998, 57, R6803-R6806.	3.2	75
275	Smooth growth fronts in Si/Ge heteroepitaxy by kinetic growth manipulation. Physical Review B, 1998, 58, 15359-15362.	3.2	7
276	Dynamics and Energetics of Si Ad-dimers and Ad-dimer Clusters on Ge(100). Physical Review Letters, 1997, 79, 2494-2497.	7.8	35
277	Anomalous strong repulsive step-step interaction on slightly misoriented Si(113). Physical Review B, 1997, 55, 7864-7867.	3.2	28
278	Comment on "Step dynamics and equilibrium structure of monoatomic steps on Si(100)-2×1― Physical Review B, 1997, 56, 4283-4283.	3.2	1
279	Strain-Induced Nanostructuring on Si(001) and Ge(001) Surfaces. Modern Physics Letters B, 1997, 11, 47-52.	1.9	2
280	Direct determination of the step-edge formation energies of the energetically stable and unstable double-layer step edges of Si(001). Physical Review B, 1996, 53, 15429-15431.	3.2	8
281	Fluctuations of monatomic steps on Si(001). Physical Review B, 1995, 51, 5465-5468.	3.2	22
282	Energetics of Ni-Induced Vacancy Line Defects on Si(001). Physical Review Letters, 1995, 75, 3890-3893.	7.8	72
283	Energetics and Dynamics of Si Ad-Dimers on Si(001). Physical Review Letters, 1995, 74, 3644-3647.	7.8	116
284	Experimental investigation of criteria for thermal roughening. Surface Science, 1995, 331-333, 1110-1114.	1.9	6
285	Step structure of vicinal Ge(001) surfaces. Surface Science, 1995, 322, 1-7.	1.9	19
286	Investigation of the Vicinal Ge(001) Surface with Stm. Materials Research Society Symposia Proceedings, 1994, 332, 555.	0.1	0
287	Step - Step Interactions on the Vicinal GE(001) Surface. Materials Research Society Symposia Proceedings, 1994, 355, 203.	0.1	0
288	Why monatomic steps on Si(001) are always rough. Physical Review Letters, 1993, 70, 2122-2125.	7.8	35

#	Article	IF	CITATIONS
289	Morphology of monatomic step edges on vicinal Si(001). Physical Review B, 1993, 48, 14269-14275.	3.2	36
290	Equilibrium structure of monatomic steps on vicinal Si(001). Physical Review B, 1992, 45, 5965-5968.	3.2	89
291	Random and ordered defects on ion-bombarded Si(100)-($2\tilde{A}$ -1) surfaces. Physical Review Letters, 1992, 69, 3076-3079.	7.8	94
292	Scanning tunneling microscopy and spectroscopy of ion-bombarded Si(111) and Si(100) surfaces. Physical Review B, 1992, 46, 7581-7587.	3.2	104
293	On the period of reflection highâ€energy electron diffraction intensity oscillations during Si molecularâ€beam epitaxy on vicinal Si(001). Journal of Applied Physics, 1991, 70, 2614-2617.	2.5	25
294	Reconstructions and phase transitions of the Ge(001) surface. Journal of Physics Condensed Matter, 1991, 3, 409-415.	1.8	13
295	Adsorption of atomic oxygen (N2O) on a clean Ge(001) surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 2581-2584.	2.1	4
296	Metallic properties of the Ge(001) surface. Physical Review B, 1989, 39, 5576-5578.	3.2	13
297	Comment on 'Surface reconstruction on Si(100) studied by the CNDO method'. Journal of Physics Condensed Matter, 1989, 1, 10603-10604.	1.8	1