Brian Berkowitz

List of Publications by Citations

Source: https://exaly.com/author-pdf/8654510/brian-berkowitz-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

11,612 256 55 101 h-index g-index citations papers 282 6.68 12,725 5.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
256	Characterizing flow and transport in fractured geological media: A review. <i>Advances in Water Resources</i> , 2002 , 25, 861-884	4.7	908
255	Scaling of fracture systems in geological media. <i>Reviews of Geophysics</i> , 2001 , 39, 347-383	23.1	794
254	Modeling non-Fickian transport in geological formations as a continuous time random walk. <i>Reviews of Geophysics</i> , 2006 , 44,	23.1	746
253	Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. <i>Advances in Water Resources</i> , 2004 , 27, 155-173	4.7	292
252	Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. <i>Journal of Contaminant Hydrology</i> , 2003 , 64, 203-26	3.9	274
251	Anomalous Transport in Random Fracture Networks. <i>Physical Review Letters</i> , 1997 , 79, 4038-4041	7.4	253
250	Theory of anomalous chemical transport in random fracture networks. <i>Physical Review E</i> , 1998 , 57, 585	8- <u>5</u> 869	243
249	Flow in rock fractures: The local cubic law assumption reexamined. <i>Water Resources Research</i> , 1998 , 34, 2811-2825	5.4	238
248	Anomalous transport in laboratory-scale, heterogeneous porous media. <i>Water Resources Research</i> , 2000 , 36, 149-158	5.4	228
247	Percolation theory and its application to groundwater hydrology. <i>Water Resources Research</i> , 1993 , 29, 775-794	5.4	227
246	Percolation Theory and Network Modeling Applications in Soil Physics. <i>Surveys in Geophysics</i> , 1998 , 19, 23-72	7.6	217
245	Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations. <i>Water Resources Research</i> , 2002 , 38, 9-1-9-12	5.4	211
244	Transport behavior of a passive solute in continuous time random walks and multirate mass transfer. <i>Water Resources Research</i> , 2003 , 39,	5.4	191
243	Anomalous Transport in Classical Soil and Sand Columns. <i>Soil Science Society of America Journal</i> , 2004 , 68, 1539-1548	2.5	184
242	Transport of metal oxide nanoparticles in saturated porous media. <i>Chemosphere</i> , 2010 , 81, 387-93	8.4	173
241	On Characterization of Anomalous Dispersion in Porous and Fractured Media. <i>Water Resources Research</i> , 1995 , 31, 1461-1466	5.4	167
240	Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. <i>PLoS ONE</i> , 2013 , 8, e84441	3.7	152

(2004-2002)

239	The dynamical foundation of fractal stream chemistry: The origin of extremely long retention times. <i>Geophysical Research Letters</i> , 2002 , 29, 5-1-5-4	4.9	152
238	Analysis of fracture network connectivity using percolation theory. <i>Mathematical Geosciences</i> , 1995 , 27, 467-483		152
237	Continuum models for contaminant transport in fractured porous formations. <i>Water Resources Research</i> , 1988 , 24, 1225-1236	5.4	129
236	Transport of silver nanoparticles (AgNPs) in soil. <i>Chemosphere</i> , 2012 , 88, 670-5	8.4	127
235	Effects of metal oxide nanoparticles on soil properties. <i>Chemosphere</i> , 2013 , 90, 640-6	8.4	118
234	Origins of anomalous transport in heterogeneous media: Structural and dynamic controls. <i>Water Resources Research</i> , 2014 , 50, 1490-1505	5.4	103
233	Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media. <i>Ground Water</i> , 2001 , 39, 593-603	2.4	95
232	Computing "anomalous" contaminant transport in porous media: the CTRW MATLAB toolbox. <i>Ground Water</i> , 2005 , 43, 947-50	2.4	92
231	Precipitation and dissolution of reactive solutes in fractures. Water Resources Research, 1998 , 34, 457-4	179.4	86
230	Mass transfer at fracture intersections: An evaluation of mixing models. <i>Water Resources Research</i> , 1994 , 30, 1765-1773	5.4	83
229	Field observation of flow in a fracture intersecting unsaturated chalk. <i>Water Resources Research</i> , 1999 , 35, 3315-3326	5.4	80
228	Numerical simulation of non-Fickian transport in geological formations with multiple-scale heterogeneities. <i>Water Resources Research</i> , 2004 , 40,	5.4	79
227	Fluid flow and solute migration within the capillary fringe. <i>Ground Water</i> , 2002 , 40, 76-84	2.4	78
226	Will the Dead Sea die?. <i>Geology</i> , 1998 , 26, 755	5	77
225	Scaling of fracture connectivity in geological formations. <i>Geophysical Research Letters</i> , 2000 , 27, 2061-2	20,6.4	76
224	The Role of Probabilistic Approaches to Transport Theory in Heterogeneous Media. <i>Transport in Porous Media</i> , 2001 , 42, 241-263	3.1	75
223	Reactive Solute Transport in a Single Fracture. Water Resources Research, 1996, 32, 901-913	5.4	75
222	Quantitative characterization of pore-scale disorder effects on transport in "homogeneous" granular media. <i>Physical Review E</i> , 2004 , 70, 041108	2.4	74

221	Mixing-induced precipitation and porosity evolution in porous media. <i>Advances in Water Resources</i> , 2005 , 28, 337-344	4.7	74
220	Oxidation of organic pollutants in aqueous solutions by nanosized copper oxide catalysts. <i>Applied Catalysis B: Environmental</i> , 2009 , 85, 207-211	21.8	72
219	In situ remediation of groundwater contaminated by heavy- and transition-metal ions by selective ion-exchange methods. <i>Environmental Science & Environmental Enviro</i>	10.3	72
218	Suppression and stimulation of seafloor hydrothermal convection by exothermic mineral hydration. <i>Earth and Planetary Science Letters</i> , 2006 , 243, 657-668	5.3	71
217	Analysis of field observations of tracer transport in a fractured till. <i>Journal of Contaminant Hydrology</i> , 2001 , 47, 29-51	3.9	70
216	Morphogen gradient formation in a complex environment: an anomalous diffusion model. <i>Physical Review E</i> , 2005 , 72, 041916	2.4	69
215	Impact of the Capillary Fringe on Local Flow, Chemical Migration, and Microbiology. <i>Vadose Zone Journal</i> , 2004 , 3, 534-548	2.7	67
214	Particle tracking model of bimolecular reactive transport in porous media. <i>Water Resources Research</i> , 2010 , 46,	5.4	66
213	Structure, flow, and generalized conductivity scaling in fracture networks. <i>Water Resources Research</i> , 1998 , 34, 2103-2121	5.4	66
212	Continuous time random walk and multirate mass transfer modeling of sorption. <i>Chemical Physics</i> , 2003 , 295, 71-80	2.3	64
211	Application of Continuous Time Random Walks to Transport in Porous Media (Journal of Physical Chemistry B, 2000 , 104, 3942-3947	3.4	64
210	Modeling bimolecular reactions and transport in porous media. <i>Geophysical Research Letters</i> , 2009 , 36, n/a-n/a	4.9	63
209	Transport and intersection mixing in random fracture networks with power law length distributions. <i>Water Resources Research</i> , 2001 , 37, 2493-2501	5.4	63
208	Investigation of flow in water-saturated rock fractures using nuclear magnetic resonance imaging (NMRI). <i>Water Resources Research</i> , 1999 , 35, 347-360	5.4	63
207	Exploring the nature of non-Fickian transport in laboratory experiments. <i>Advances in Water Resources</i> , 2009 , 32, 750-755	4.7	61
206	Fractal and multifractal measures of natural and synthetic fracture networks. <i>Journal of Geophysical Research</i> , 1997 , 102, 12205-12218		60
205	Non-Fickian transport and multiple-rate mass transfer in porous media. <i>Water Resources Research</i> , 2008 , 44,	5.4	58
204	Measurement and analysis of dissolution patterns in rock fractures. <i>Water Resources Research</i> , 2002 , 38, 5-1-5-12	5.4	57

(2014-2005)

203	The role of fractures on coupled dissolution and precipitation patterns in carbonate rocks. <i>Advances in Water Resources</i> , 2005 , 28, 507-521	4.7	56
202	Stereological analysis of fracture network structure in geological formations. <i>Journal of Geophysical Research</i> , 1998 , 103, 15339-15360		56
201	Aquifer Characteristics Derived From the Interaction Between Water Levels of a Terminal Lake (Dead Sea) and an Adjacent Aquifer. <i>Water Resources Research</i> , 1995 , 31, 893-902	5.4	53
200	Experimental and modeling investigation of multicomponent reactive transport in porous media. Journal of Contaminant Hydrology, 2011 , 120-121, 27-44	3.9	52
199	Fate and transport of carbamazepine in soil aquifer treatment (SAT) infiltration basin soils. <i>Chemosphere</i> , 2011 , 82, 244-52	8.4	52
198	Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron. <i>ACS Applied Materials & Early Interfaces</i> , 2012 , 4, 3416-23	9.5	51
197	Application of a percolation model to flow in fractured hard rocks. <i>Journal of Geophysical Research</i> , 1991 , 96, 10015		51
196	A generalized growth model for simulating initial migration of dense non-aqueous phase liquids. <i>Water Resources Research</i> , 1998 , 34, 611-622	5.4	50
195	Flow pattern variability in natural fracture intersections. <i>Geophysical Research Letters</i> , 1999 , 26, 1765-1	7 6 89	50
194	Quantifying Solute Transport at the Shale Hills Critical Zone Observatory. <i>Vadose Zone Journal</i> , 2011 , 10, 843-857	2.7	49
193	Evolution of hydraulic conductivity by precipitation and dissolution in carbonate rock. <i>Water Resources Research</i> , 2003 , 39,	5.4	47
192	The development and influence of gas bubbles in phreatic aquifers under natural flow conditions. <i>Transport in Porous Media</i> , 1989 , 4, 295	3.1	47
191	Measurements and models of reactive transport in geological media. <i>Reviews of Geophysics</i> , 2016 , 54, 930-986	23.1	46
190	Effects of air injection on flow through porous media: Observations and analyses of laboratory-scale processes. <i>Water Resources Research</i> , 2004 , 40,	5.4	44
189	Percolation approach to the problem of hydraulic conductivity in porous media. <i>Transport in Porous Media</i> , 1992 , 9, 275-286	3.1	44
188	Use of nanosized catalysts for transformation of chloro-organic pollutants. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	43
187	On Fracture Structure and Preferential Flow in Unsaturated Chalk. <i>Ground Water</i> , 2000 , 38, 444-451	2.4	43
186	Detection, fate and transport of estrogen family hormones in soil. <i>Chemosphere</i> , 2014 , 95, 336-45	8.4	42

185	Enrofloxacin oxidative degradation facilitated by metal oxide nanoparticles. <i>Chemosphere</i> , 2012 , 86, 144-9	8.4	42
184	Laboratory experiments on dispersive transport across interfaces: The role of flow direction. <i>Water Resources Research</i> , 2009 , 45,	5.4	41
183	Towards a unified framework for anomalous transport in heterogeneous media. <i>Chemical Physics</i> , 2002 , 284, 349-359	2.3	41
182	Contaminant Geochemistry 2008,		41
181	Random walk particle tracking simulations of non-Fickian transport in heterogeneous media. Journal of Computational Physics, 2010 , 229, 4304-4314	4.1	40
180	Effects of junction transfer characteristics on transport in fracture networks. <i>Water Resources Research</i> , 2001 , 37, 909-923	5.4	39
179	Transport behavior of coupled continuous-time random walks. <i>Physical Review E</i> , 2008 , 78, 041110	2.4	38
178	Effects of pore-size controlled solubility on reactive transport in heterogeneous rock. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	38
177	Spatial behavior of anomalous transport. <i>Physical Review E</i> , 2002 , 65, 031101	2.4	38
176	Stochastic pore-scale growth models of DNAPL migration in porous media. <i>Advances in Water Resources</i> , 2001 , 24, 309-323	4.7	37
175	A Numerical Study of the Distribution of Water in Partially Saturated Porous Rock. <i>Transport in Porous Media</i> , 2001 , 45, 301-317	3.1	37
174	Carbonate dissolution and precipitation in coastal environments: Laboratory analysis and theoretical consideration. <i>Water Resources Research</i> , 2004 , 40,	5.4	36
173	Catalytic degradation of brominated flame retardants by copper oxide nanoparticles. <i>Chemosphere</i> , 2013 , 93, 172-7	8.4	35
172	Transport behavior in three-dimensional fracture intersections. Water Resources Research, 2003, 39,	5.4	35
171	Boundary conditions along permeable fracture walls: Influence on flow and conductivity. <i>Water Resources Research</i> , 1989 , 25, 1919-1922	5.4	34
170	Anaerobic treatment of intensive fish culture effluents: digestion of fish feed and release of volatile fatty acids. <i>Aquaculture</i> , 1995 , 133, 9-20	4.4	33
169	Modeling of surface roughness effects on glaze ice accretion. <i>Journal of Thermophysics and Heat Transfer</i> , 1991 , 5, 54-60	1.3	32
168	Three-dimensional flow measurements in rock fractures. <i>Water Resources Research</i> , 1999 , 35, 3955-3959	95.4	31

(2017-1998)

167	A Measurement System to Determine Water Flux and Solute Transport Through Fractures in the Unsaturated Zone. <i>Ground Water</i> , 1998 , 36, 444-449	2.4	30	
166	Non-Fickian transport in porous media with bimodal structural heterogeneity. <i>Journal of Contaminant Hydrology</i> , 2011 , 120-121, 213-21	3.9	29	
165	Continuous time random walks and heat transfer in porous media. <i>Transport in Porous Media</i> , 2007 , 67, 413-430	3.1	28	
164	Continuous time random walks revisited: first passage time and spatial distributions. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2004 , 334, 46-66	3.3	28	
163	Synthesis and characterization of isotopically-labeled silver, copper and zinc oxide nanoparticles for tracing studies in plants. <i>Environmental Pollution</i> , 2018 , 242, 1827-1837	9.3	27	
162	Non-Fickian Transport in Transparent Replicas of Rough-Walled Rock Fractures. <i>Transport in Porous Media</i> , 2013 , 98, 651-682	3.1	27	
161	Comparative analysis of formulations for conservative transport in porous media through sensitivity-based parameter calibration. <i>Water Resources Research</i> , 2013 , 49, 5206-5220	5.4	27	
160	Analytic derivation of percolation thresholds in anisotropic systems of permeable objects. <i>Physical Review A</i> , 1991 , 43, 6604-6612	2.6	27	
159	Fate and transport of free and conjugated estrogens during soil passage. <i>Environmental Pollution</i> , 2015 , 206, 80-7	9.3	26	
158	Anomalous reactive transport in porous media: Experiments and modeling. <i>Physical Review E</i> , 2015 , 91, 052130	2.4	26	
157	Effective Medium Analysis of Random Lattices. <i>Transport in Porous Media</i> , 2000 , 40, 145-151	3.1	25	
156	Time-dependent velocity-field controls on anomalous chemical transport in porous media. <i>Water Resources Research</i> , 2017 , 53, 3760-3769	5.4	24	
155	Abiotic soil changes induced by engineered nanomaterials: A critical review. <i>Journal of Contaminant Hydrology</i> , 2015 , 181, 3-16	3.9	24	
154	Transport of engineered nanoparticles in partially saturated sand columns. <i>Journal of Hazardous Materials</i> , 2016 , 311, 254-62	12.8	24	
153	Reductive hydrogenation of polycyclic aromatic hydrocarbons catalyzed by metalloporphyrins. <i>Chemosphere</i> , 2007 , 68, 210-7	8.4	24	
152	Pre-posterior analysis as a tool for data evaluation: Application to aquifer contamination. <i>Water Resources Management</i> , 1988 , 2, 11-20	3.7	24	
151	Experimental and modeling analysis of coupled non-Fickian transport and sorption in natural soils. <i>Journal of Contaminant Hydrology</i> , 2012 , 132, 28-36	3.9	23	
150	Atrazine degradation through PEI-copper nanoparticles deposited onto montmorillonite and sand. <i>Scientific Reports</i> , 2017 , 7, 1415	4.9	23	

149	Pore-scale study of drainage displacement under combined capillary and gravity effects in index-matched porous media. <i>Water Resources Research</i> , 2006 , 42,	5.4	23
148	Flow, dissolution, and precipitation in dolomite. Water Resources Research, 2003, 39,	5.4	23
147	Structural controls on anomalous transport in fractured porous rock. <i>Water Resources Research</i> , 2016 , 52, 5634-5643	5.4	23
146	Dissolution and precipitation dynamics during dedolomitization. <i>Water Resources Research</i> , 2011 , 47,	5.4	22
145	An experimental and numerical investigation of saltwater movement in coupled saturatedpartially saturated systems. <i>Water Resources Research</i> , 2002 , 38, 5-1-5-11	5.4	22
144	Reactive transport in disordered media: Role of fluctuations in interpretation of laboratory experiments. <i>Advances in Water Resources</i> , 2013 , 51, 86-103	4.7	21
143	Inertial Effects on Flow and Transport in Heterogeneous Porous Media. <i>Physical Review Letters</i> , 2018 , 120, 054504	7.4	20
142	Record-breaking statistics for random walks in the presence of measurement error and noise. <i>Physical Review Letters</i> , 2013 , 110, 180602	7.4	20
141	Contaminant-induced irreversible changes in properties of the soil-vadose-aquifer zone: an overview. <i>Chemosphere</i> , 2008 , 71, 1409-21	8.4	20
140	Silver nanoparticle (Ag-NP) retention and release in partially saturated soil: column experiments and modelling. <i>Environmental Science: Nano</i> , 2018 , 5, 422-435	7.1	20
139	Integrodifferential formulations of the continuous-time random walk for solute transport subject to bimolecular A+B-threactions: From micro- to mesoscopic. <i>Physical Review E</i> , 2015 , 91, 032113	2.4	19
138	Evidence of preferential path formation and path memory effect during successive infiltration and drainage cycles in uniform sand columns. <i>Journal of Contaminant Hydrology</i> , 2014 , 165, 1-10	3.9	19
137	Multimodel framework for characterization of transport in porous media. <i>Water Resources Research</i> , 2015 , 51, 3384-3402	5.4	19
136	Simulation of the interplay between resident and infiltrating water in partially saturated porous media. <i>Water Resources Research</i> , 2009 , 45,	5.4	19
135	Contaminant geochemistrya new perspective. <i>Die Naturwissenschaften</i> , 2010 , 97, 1-17	2	19
134	The Nubian Sandstone aquifer in the central and northern Negev, Israel: delineation of the hydrogeological model under conditions of scarce data. <i>Journal of Hydrology</i> , 1992 , 132, 107-135	6	19
133	The interaction of two major old water bodies and its implication for the exploitation of groundwater in the multiple aquifer system of the central and northern Negev, Israel. <i>Journal of Hydrology</i> , 1993 , 143, 169-190	6	18
132	Interpretation and nonuniqueness of CTRW transition distributions: Insights from an alternative solute transport formulation. <i>Advances in Water Resources</i> , 2014 , 74, 54-63	4.7	17

131	Soil-Subsurface Change 2012 ,		17
130	Salt-pump mechanism for contaminant intrusion into coastal aquifers. <i>Science</i> , 2003 , 300, 950	33.3	17
129	Exact effective transport dynamics in a one-dimensional random environment. <i>Physical Review E</i> , 2005 , 72, 031110	2.4	17
128	Dispersion in Sub-Representative Elementary Volume Fracture Networks: Percolation Theory and Random Walk Approaches. <i>Water Resources Research</i> , 1991 , 27, 3159-3164	5.4	17
127	Effects of particle size and surface chemistry on plastic nanoparticle transport in saturated natural porous media. <i>Chemosphere</i> , 2021 , 262, 127854	8.4	17
126	Anomalous transport in correlated velocity fields. <i>Physical Review E</i> , 2010 , 81, 011128	2.4	16
125	Magnetic resonance imaging and quantitative analysis of particle deposition in porous media. <i>Environmental Science & Environmental Science & Environm</i>	10.3	16
124	Are sedimentary salt layers always impermeable?. <i>Geophysical Research Letters</i> , 1995 , 22, 2761-2764	4.9	16
123	Random-adding determination of percolation thresholds in interacting systems. <i>Physical Review E</i> , 1994 , 49, R949-R952	2.4	16
122	Experimental and modeling evidence of kilometer-scale anomalous tracer transport in an alpine karst aquifer. <i>Water Research</i> , 2020 , 178, 115755	12.5	16
121	The Mobility of Plastic Nanoparticles in Aqueous and Soil Environments: A Critical Review. <i>ACS ES&T Water</i> , 2021 , 1, 48-57		16
120	Anomalous transport dependence on Pālet number, porous medium heterogeneity, and a temporally varying velocity field. <i>Physical Review E</i> , 2019 , 99, 033108	2.4	15
119	First-principles derivation of reactive transport modeling parameters for particle tracking and PDE approaches. <i>Advances in Water Resources</i> , 2014 , 69, 146-158	4.7	15
118	Oxidation of aqueous organic pollutants using a stable copper nanoparticle suspension. <i>Canadian Journal of Chemical Engineering</i> , 2017 , 95, 343-352	2.3	15
117	Measurements of Interactions between Resident and Infiltrating Water in a Lattice Micromodel. <i>Vadose Zone Journal</i> , 2011 , 10, 624-633	2.7	15
116	8-Hydroxyquinoline-5-sulfonic Acid (HQS) Impregnated on Lewatit MP 600 for Cadmium Complexation: Implication of Solvent Impregnated Resins for Water Remediation. <i>Separation Science and Technology</i> , 2003 , 38, 149-163	2.5	15
115	Is Old Faithful a strange attractor?. <i>Journal of Geophysical Research</i> , 1994 , 99, 4495-4503		15
114	Push-pull tracer tests: Their information content and use for characterizing non-Fickian, mobile-immobile behavior. <i>Water Resources Research</i> , 2016 , 52, 9565-9585	5.4	14

113	Reductive dechlorination of atrazine catalyzed by metalloporphyrins. <i>Chemosphere</i> , 2009 , 75, 48-55	8.4	14
112	Buoyancy-driven dissolution enhancement in rock fractures. <i>Geology</i> , 2000 , 28, 1051	5	14
111	Nickel migration and retention dynamics in natural soil columns. <i>Water Resources Research</i> , 2015 , 51, 7702-7722	5.4	13
110	Analysis of subsurface flow and formation anisotropy in a fractured aquitard using transient water level data. <i>Water Resources Research</i> , 1992 , 28, 199-207	5.4	13
109	Characterization of Bimolecular Reactive Transport in Heterogeneous Porous Media. <i>Transport in Porous Media</i> , 2016 , 115, 291-310	3.1	13
108	Contaminant Geochemistry 2014 ,		12
107	Estimation of Single-Metal and Competitive Sorption Isotherms through Maximum Likelihood and Model Quality Criteria. <i>Soil Science Society of America Journal</i> , 2012 , 76, 1229-1245	2.5	12
106	Interplay between resident and infiltrating water: Estimates from transient water flow and solute transport. <i>Journal of Hydrology</i> , 2012 , 458-459, 40-50	6	11
105	Experimental and numerical studies of the 18O exchange between CO2 and water in the atmosphereBoil invasion flux. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 2657-2671	5.5	11
104	Diffusion in multicomponent systems: a free energy approach. <i>Chemical Physics</i> , 2004 , 302, 21-30	2.3	11
103	Measurement and modeling of engineered nanoparticle transport and aging dynamics in a reactive porous medium. <i>Water Resources Research</i> , 2016 , 52, 5473-5491	5.4	11
102	Microchemical contaminants as forming agents of anthropogenic soils. <i>Ambio</i> , 2017 , 46, 109-120	6.5	10
101	Surface water and groundwater: unifying conceptualization and quantification of the two water worlds ### Handward ### Handward ### Water ####################################	5.5	10
100	Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions. <i>Chemosphere</i> , 2016 , 144, 713-20	8.4	10
99	Application of a mixing-ratios based formulation to model mixing-driven dissolution experiments. <i>Advances in Water Resources</i> , 2009 , 32, 756-766	4.7	10
98	Dedolomitization and flow in fractures. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	10
97	Mixing-driven diagenesis and mineral deposition: CaCO3 precipitation in salt water If resh water mixing zones. <i>Geophysical Research Letters</i> , 2003 , 30, n/a-n/a	4.9	10
96	Solute transport in fracture channel and parallel plate models. <i>Geophysical Research Letters</i> , 1991 , 18, 227-230	4.9	10

(2021-2020)

95	Elucidating the catalytic degradation of enrofloxacin by copper oxide nanoparticles through the identification of the reactive oxygen species. <i>Chemosphere</i> , 2020 , 258, 127266	8.4	9
94	A continuous time random walk (CTRW) integro-differential equation with chemical interaction. <i>European Physical Journal B</i> , 2018 , 91, 1	1.2	9
93	Mobility and Interaction of Heavy Metals in a Natural Soil. <i>Transport in Porous Media</i> , 2013 , 97, 295-315	3.1	9
92	Fickian and non-Fickian diffusion with bimolecular reactions. <i>Physical Review E</i> , 2013 , 87,	2.4	9
91	Spatial and Temporal Distribution of Free and Conjugated Estrogens During Soil Column Transport. <i>Clean - Soil, Air, Water</i> , 2017 , 45,	1.6	8
90	Visualization and analysis of nanoparticle transport and ageing in reactive porous media. <i>Journal of Hazardous Materials</i> , 2015 , 299, 513-9	12.8	8
89	Transport in disordered media with spatially nonuniform fields. <i>Physical Review E</i> , 2010 , 81, 031102	2.4	8
88	Theory of continuum percolation. III. Low-density expansion. <i>Physical Review E</i> , 1997 , 56, 1379-1395	2.4	8
87	Application of the central-particle-potential approximation for percolation in interacting systems. <i>Physical Review E</i> , 1995 , 52, 4482-4494	2.4	8
86	Mobility and retention of indium and gallium in saturated porous media. <i>Journal of Hazardous Materials</i> , 2019 , 363, 394-400	12.8	8
85	Transport of platinum-based pharmaceuticals in water-saturated sand and natural soil: Carboplatin and cisplatin species. <i>Chemosphere</i> , 2019 , 219, 390-399	8.4	8
84	Copper Oxide Nanoparticle-Coated Quartz Sand as a Catalyst for Degradation of an Organic Dye in Water. <i>Water, Air, and Soil Pollution</i> , 2012 , 223, 3105-3115	2.6	7
83	Record setting during dispersive transport in porous media. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-	-n/ay	7
82	Phase separation and convection in heterogeneous porous media: Implications for seafloor hydrothermal systems. <i>Journal of Geophysical Research</i> , 2007 , 112,		7
81	An experimental analogue for convection and phase separation in hydrothermal systems. <i>Journal of Geophysical Research</i> , 2006 , 111,		7
80	Vertical Heterogeneity in Horizontal Components of Specific Discharge: Case Study Analysisa. <i>Ground Water</i> , 1993 , 31, 33-40	2.4	7
79	Column Relaxation Methods for Least Norm Problems. <i>SIAM Journal on Scientific and Statistical Computing</i> , 1990 , 11, 975-989		7

77	The effect of nanoparticles and humic acid on technology critical element concentrations in aqueous solutions with soil and sand. <i>Science of the Total Environment</i> , 2018 , 610-611, 1083-1091	10.2	6
76	One-Dimensional Finite Element Method Solution of a Class of Integro-Differential Equations: Application to Non-Fickian Transport in Disordered Media. <i>Transport in Porous Media</i> , 2016 , 115, 239-26	3 ^{3.1}	6
75	Behavior and stability of organic contaminant droplets in aqueous solutions. <i>Chemosphere</i> , 2007 , 69, 1593-601	8.4	6
74	The Impact of Biased Sampling on the Estimation of the Semivariogram Within Fractured Media Containing Multiple Fracture Sets. <i>Mathematical Geosciences</i> , 2000 , 32, 543-560		6
73	Isotopic labelling for sensitive detection of nanoparticle uptake and translocation in plants from hydroponic medium and soil. <i>Environmental Chemistry</i> , 2019 , 16, 391	3.2	6
72	Modeling Non-Fickian Solute Transport Due to Mass Transfer and Physical Heterogeneity on Arbitrary Groundwater Velocity Fields. <i>Water Resources Research</i> , 2020 , 56, e2019WR026868	5.4	6
71	The Impact of Ureteral Deformation and External Ureteral Pressure on Stent Failure in Extrinsic Ureteral Obstruction: An Experimental Study. <i>Journal of Endourology</i> , 2020 , 34, 68-73	2.7	6
70	Transport of oxaliplatin species in water-saturated natural soil. <i>Chemosphere</i> , 2018 , 208, 829-837	8.4	6
69	Benchmarking numerical codes for tracer transport with the aid of laboratory-scale experiments in 2D heterogeneous porous media. <i>Journal of Contaminant Hydrology</i> , 2018 , 212, 55-64	3.9	5
68	Effect of Phosphate, Sulfate, Arsenate, and Pyrite on Surface Transformations and Chemical Retention of Gold Nanoparticles (Au-NPs) in Partially Saturated Soil Columns. <i>Environmental Science & Environmental Science & Envi</i>	10.3	5
67	Pore-scale imbibition experiments in dry and prewetted porous media. <i>Advances in Water Resources</i> , 2007 , 30, 2373-2386	4.7	5
66	Advective transport in the percolation backbone in two dimensions. <i>Physical Review E</i> , 2001 , 64, 056305	5 2.4	5
65	A Monte Carlo Model for the Flow of Dust in a Porous Comet Nucleus. <i>Icarus</i> , 1999 , 137, 348-354	3.8	5
64	Influence of embedded fractures on contaminant diffusion in geological formations. <i>Geophysical Research Letters</i> , 1996 , 23, 925-928	4.9	5
63	A spatial, time-dependent approach to estimation of hydrologic data. <i>Journal of Hydrology</i> , 1992 , 135, 133-142	6	5
62	Reactive Transport in Heterogeneous Porous Media Under Different PElet Numbers. <i>Water Resources Research</i> , 2019 , 55, 10119-10129	5.4	5
61	Comparative study of renal drainage with different ureteral stents subject to extrinsic ureteral obstruction using an in vitro ureter-stent model. <i>BMC Urology</i> , 2021 , 21, 100	2.2	5
60	Two-dimensional finite element method solution of a class of integro-differential equations: Application to non-Fickian transport in disordered media. <i>International Journal for Numerical Methods in Engineering</i> , 2017 , 112, 459-478	2.4	4

(2020-2019)

59	Characterization of mixing and reaction between chemical species during cycles of drainage and imbibition in porous media. <i>Advances in Water Resources</i> , 2019 , 130, 113-128	4.7	4	
58	Finite-Element Method Solution of Non-Fickian Transport in Porous Media: The CTRW-FEM Package. <i>Ground Water</i> , 2019 , 57, 479-484	2.4	4	
57	Response to Comment on """Salt-Pump Mechanism for Contaminant Intrusion into Coastal Aquifers"". <i>Science</i> , 2003 , 302, 784c-784	33.3	4	
56	Continuum percolation conductivity exponents in restricted domains. <i>Journal of Statistical Physics</i> , 1995 , 80, 1415-1423	1.5	4	
55	Impact of Colloidal Fluid on Stent Failure Under Extrinsic Ureteral Obstruction: An Experimental Study. <i>Journal of Endourology</i> , 2020 , 34, 987-992	2.7	3	
54	Can contaminated, fractured, porous aquifers be restored?. <i>Die Naturwissenschaften</i> , 1990 , 77, 431-43.	3 2	3	
53	Reactive Transport with FluidBolid Interactions in Dual-Porosity Media. ACS ES&T Water, 2021, 1, 259-2	68	3	
52	Controls on interactions between resident and infiltrating waters in porous media. <i>Advances in Water Resources</i> , 2018 , 121, 304-315	4.7	3	
51	Process-Dependent Solute Transport in Porous Media. <i>Transport in Porous Media</i> , 2021 , 140, 421	3.1	3	
50	Electronic waste as a source of rare earth element pollution: Leaching, transport in porous media, and the effects of nanoparticles. <i>Chemosphere</i> , 2022 , 287, 132217	8.4	3	
49	Bimolecular reactive transport in a two-dimensional velocity field in disordered media. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2019 , 52, 424005	2	2	
48	Water Flow and Solute Transport in Unsaturated Fractured Chalk. <i>Geophysical Monograph Series</i> , 2013 , 183-196	1.1	2	
47	Transport Equation Evaluation of Coupled Continuous Time Random Walks. <i>Journal of Statistical Physics</i> , 2010 , 141, 1093-1103	1.5	2	
46	Dispersion in Heterogeneous Geological Formations: Preface (Transport in Porous Media Special Issue). <i>Transport in Porous Media</i> , 2001 , 42, 1-2	3.1	2	
45	A scale-dependent equation for solute transport in porous media. <i>Transport in Porous Media</i> , 1988 , 3, 199-205	3.1	2	
44	Buoyancy-driven dissolution enhancement in rock fractures. <i>Geology</i> , 2000 , 28, 1051-1054	5	2	
43	Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work. <i>Hydrology and Earth System Sciences</i> , 2021 , 25, 5337-5353	5.5	2	
42	Aurora: A non-Fickian (and Fickian) particle tracking package for modeling groundwater contaminant transport with MODFLOW. <i>Environmental Modelling and Software</i> , 2020 , 134, 104871	5.2	2	

41	Effect of nanoplastics on the transport of platinum-based pharmaceuticals in water-saturated natural soil and their effect on a soil microbial community. <i>Environmental Science: Nano</i> , 2020 , 7, 3178-3	788	2
40	Simulation of reactive solute transport in the critical zone: a Lagrangian model for transient flow and preferential transport. <i>Hydrology and Earth System Sciences</i> , 2021 , 25, 1483-1508	5.5	2
39	Response to: "Letter to the Editor, International Urology and Nephrology: in silico-in vitro-in vivo-can numerical simulations based on computational fluid dynamics (CFD) replace studies of the urinary tract?". <i>International Urology and Nephrology</i> , 2021 , 53, 1837-1838	2.3	2
38	Influence of Single Stent Size and Tandem Stents Subject to Extrinsic Ureteral Obstruction and Stent Occlusion on Stent Failure. <i>Journal of Endourology</i> , 2021 ,	2.7	2
37	Catalytic Degradation of Fluorouracil and Its Derivatives by Copper-Based Nanoparticles. <i>Environmental Engineering Science</i> , 2019 , 36, 1466-1473	2	2
36	Influence of humic substances on the transport of indium and gallium in porous media. <i>Chemosphere</i> , 2020 , 249, 126099	8.4	1
35	Engineered nanomaterials as a potential metapedogenetic factor: A perspective. <i>Catena</i> , 2016 , 146, 30-37	5.8	1
34	Quantification of Non-Fickian Transport in Fractured Formations. <i>Geophysical Monograph Series</i> , 2013 , 23-31	1.1	1
33	Use of Nanoparticles for Degradation of Water Contaminants in Oxidative and Reductive Reactions. <i>ACS Symposium Series</i> , 2010 , 23-37	0.4	1
32	Numerical study of diffusion on a random-mixed-bond lattice. <i>Physical Review E</i> , 2008 , 77, 031119	2.4	1
31	An algorithm and Pascal program for geostatistical mapping. Computers and Geosciences, 1991, 17, 489-	-5ρ 3	1
30	Comment on The Operational Significance of the Continuum Hypothesis in the Theory of Water Movement Through Soils and Aquifers by P. Baveye and G. Sposito. <i>Water Resources Research</i> , 1985, 21, 1293-1293	5.4	1
29	Impact of the Capillary Fringe on Local Flow, Chemical Migration, and Microbiology. <i>Vadose Zone Journal</i> , 2004 , 3, 534-548	2.7	1
28	Chemical Pollutants as a Factor of SoilBubsurface Irreversible Transformation: An Introductory Discussion 2012 , 1-9		1
27	Properties and Behavior of Selected Inorganic and Organometallic Contaminants 2012, 39-74		1
26	The Role of Probabilistic Approaches to Transport Theory in Heterogeneous Media 2001 , 241-263		1
25	Schwartz, The Impact of Ureteral Deformation and External Ureteral Pressure on Stent Failure in Extrinsic Ureteral ObstructionAn Experimental Study by Shilo et al. (From: Shilo Y, Modai J, Leibovici D, et al. J Endourol 2019;34:74; DOI: 10.1089/end.2019.0636). <i>Journal of Endourology</i> ,	2.7	1
24	2020 , 34, 75 Current knowledge on transport and reactivity of technology-critical elements (TCEs) in soil and aquifer environments. <i>Environmental Chemistry</i> , 2020 , 17, 118	3.2	1

23	Uptake, translocation, weathering and speciation of gold nanoparticles in potato, radish, carrot and lettuce crops. <i>Journal of Hazardous Materials</i> , 2021 , 418, 126219	12.8	1
22	Selected Research Findings: Contaminant Partitioning 2014 , 171-243		O
21	Contaminant-Induced Irreversible Changes in Groundwater Chemistry 2014 , 457-500		0
20	Imaging and Chemical Analysis of External and Internal Ureteral Stent Encrustation <i>Research and Reports in Urology</i> , 2022 , 14, 159-166	1.3	O
19	Transport of Reactive Contaminants 2014 , 267-284		
18	Reply to comment by V. P. Shkilev on Non-Fickian transport and multiple-rate mass transfer in porous media (Water Resources Research, 2010, 46,	5.4	
17	Reply [to Comment on Analysis of subsurface flow and formation anisotropy in a fractured aquitard using transient water level datalby B. Rophe, B. Berkowitz, M. Magaritz, and D. Ronen [] Water Resources Research, 1993, 29, 4175-4175	5.4	
16	On the Retention and Transformation of Contaminants in Soil and the Subsurface 2012 , 75-111		
15	Contaminant-Induced Irreversible Changes in Properties of the SoilBubsurface Regime 2012 , 263-360		
14	Reactive Transport in Heterogeneous Media. <i>NATO Science for Peace and Security Series C:</i> Environmental Security, 2014 , 243-256	0.3	
13	Interchange of Infiltrating and Resident Water in Partially Saturated Media. <i>NATO Science for Peace and Security Series C: Environmental Security</i> , 2014 , 55-66	0.3	
12	Selected Research Findings: Contaminant Transport 2014 , 285-345		
11	Water Flow in the Subsurface Environment 2014 , 247-253		
10	Sorption, Retention, and Release of Contaminants 2014 , 107-146		
9	Inorganic and Organometallic Compounds 2014 , 53-77		
8	Contaminant Partitioning in the Aqueous Phase 2014 , 147-162		
7	Contaminant Impacts on the SoilBubsurface Solid Phase 2014 , 501-569		
6	Transport of Passive Contaminants 2014 , 255-266		

5	Do organic substances act as a degradable binding matrix in calcium oxalate kidney stones?. <i>BMC Urology</i> , 2021 , 21, 46	2.2
4	Preface: Special Issue in Honor of Harvey Scher 80th Birthday. <i>Transport in Porous Media</i> , 2016 , 115, 209-214	3.1
3	Stepping beyond perfectly mixed conditions in soil hydrological modelling using a Lagrangian approach. <i>Hydrology and Earth System Sciences</i> , 2022 , 26, 1615-1629	5.5
2	When should we give up on expectant management for patients with proximal ureteral stones?. <i>Current Urology</i> , 2022 , 16, 9-14	1.7
1	HESS Opinions: Chemical transport modeling in subsurface hydrological systems & pace, time, and the Boly grail of Open procesting of Hydrology and Earth System Sciences, 2022, 26, 2161-2180	5.5