Massimo Locati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8654248/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 2004, 25, 677-686.	2.9	5,272
2	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 14-20.	6.6	4,638
3	Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 2002, 23, 549-555.	2.9	4,494
4	Macrophage activation and polarization. Frontiers in Bioscience - Landmark, 2008, 13, 453.	3.0	2,558
5	Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression. Journal of Immunology, 2006, 177, 7303-7311.	0.4	2,062
6	Macrophage plasticity and polarization in tissue repair and remodelling. Journal of Pathology, 2013, 229, 176-185.	2.1	1,868
7	Macrophage Polarization Comes of Age. Immunity, 2005, 23, 344-346.	6.6	1,035
8	Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 123-147.	9.6	932
9	International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors. Pharmacological Reviews, 2014, 66, 1-79.	7.1	735
10	Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5282-5287.	3.3	515
11	Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nature Reviews Immunology, 2006, 6, 907-918.	10.6	436
12	Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood, 2013, 121, e57-e69.	0.6	426
13	Macrophage Diversity and Polarization in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1419-1423.	1.1	372
14	New vistas on macrophage differentiation and activation. European Journal of Immunology, 2007, 37, 14-16.	1.6	355
15	Macrophage Activation and Polarization as an Adaptive Component of Innate Immunity. Advances in Immunology, 2013, 120, 163-184.	1.1	352
16	The chemokine system in cancer biology and therapy. Cytokine and Growth Factor Reviews, 2010, 21, 27-39.	3.2	343
17	Differential regulation of iron homeostasis during human macrophage polarized activation. European Journal of Immunology, 2010, 40, 824-835.	1.6	337
18	Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends in Immunology, 2001, 22, 328-336.	2.9	332

#	Article	IF	CITATIONS
19	Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: Prevention of reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11791-11796.	3.3	310
20	Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Human Immunology, 2009, 70, 325-330.	1.2	304
21	Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood, 2012, 119, 411-421.	0.6	292
22	CHEMOKINES AND CHEMOKINE RECEPTORS: Biology and Clinical Relevance in Inflammation and AIDS. Annual Review of Medicine, 1999, 50, 425-440.	5.0	272
23	Negative regulation of Toll-like receptor 4 signaling by IL-10–dependent microRNA-146b. Proceedings of the United States of America, 2013, 110, 11499-11504.	3.3	270
24	Arginase-1 and Ym1 Are Markers for Murine, but Not Human, Alternatively Activated Myeloid Cells. Journal of Immunology, 2005, 174, 6561-6562.	0.4	249
25	Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends in Immunology, 2011, 32, 241-247.	2.9	248
26	Tumor-Associated Macrophages as a Paradigm of Macrophage Plasticity, Diversity, and Polarization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1478-1483.	1.1	232
27	Interleukin 10 Increases CCR5 Expression and HIV Infection in Human Monocytes. Journal of Experimental Medicine, 1998, 187, 439-444.	4.2	230
28	Chemokines and chemokine receptors: an overview. Frontiers in Bioscience - Landmark, 2009, Volume, 540.	3.0	215
29	Identification of CCR8: A Human Monocyte and Thymus Receptor for the CC Chemokine I-309. Journal of Experimental Medicine, 1997, 186, 165-170.	4.2	213
30	Unique Role of Junctional Adhesion Molecule-A in Maintaining Mucosal Homeostasis in Inflammatory Bowel Disease. Gastroenterology, 2008, 135, 173-184.	0.6	210
31	HIV-1 Coreceptor Activity of CCR5 and Its Inhibition by Chemokines: Independence from G Protein Signaling and Importance of Coreceptor Downmodulation. Virology, 1997, 234, 340-348.	1.1	204
32	Mesenchymal Stem Cells Reduce Colitis in Mice via Release of TSG6, Independently of Their Localization to the Intestine. Gastroenterology, 2015, 149, 163-176.e20.	0.6	201
33	IL-10–induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3101-10.	3.3	191
34	Cutting Edge: Scavenging of Inflammatory CC Chemokines by the Promiscuous Putatively Silent Chemokine Receptor D6. Journal of Immunology, 2003, 170, 2279-2282.	0.4	181
35	New nomenclature for atypical chemokine receptors. Nature Immunology, 2014, 15, 207-208.	7.0	176
36	Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Seminars in Cancer Biology, 2004, 14, 155-160.	4.3	174

#	Article	IF	CITATIONS
37	Protection against inflammation- and autoantibody-caused fetal loss by the chemokine decoy receptor D6. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2319-2324.	3.3	171
38	Analysis of the Gene Expression Profile Activated by the CC Chemokine Ligand 5/RANTES and by Lipopolysaccharide in Human Monocytes. Journal of Immunology, 2002, 168, 3557-3562.	0.4	164
39	The biochemistry and biology of the atypical chemokine receptors. Immunology Letters, 2012, 145, 30-38.	1.1	145
40	Î ² -Arrestin-dependent Constitutive Internalization of the Human Chemokine Decoy Receptor D6. Journal of Biological Chemistry, 2004, 279, 25590-25597.	1.6	140
41	The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunological Reviews, 2000, 177, 141-149.	2.8	139
42	The lymphatic system controls intestinal inflammation and inflammation-associated colon cancer through the chemokine decoy receptor D6. Gut, 2010, 59, 197-206.	6.1	138
43	MicroRNAs as Molecular Switches in Macrophage Activation. Frontiers in Immunology, 2019, 10, 799.	2.2	137
44	Differential Recognition and Scavenging of Native and Truncated Macrophage-Derived Chemokine (Macrophage-Derived Chemokine/CC Chemokine Ligand 22) by the D6 Decoy Receptor. Journal of Immunology, 2004, 172, 4972-4976.	0.4	132
45	Transcriptional Profiling Reveals Complex Regulation of the Monocyte IL-1Î ² System by IL-13. Journal of Immunology, 2005, 174, 834-845.	0.4	132
46	Increased inflammation in mice deficient for the chemokine decoy receptor D6. European Journal of Immunology, 2005, 35, 1342-1346.	1.6	131
47	Differential regulation of chemokine production by Fc receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). Journal of Leukocyte Biology, 2006, 80, 342-349.	1.5	131
48	Induction of Functional IL-8 Receptors by IL-4 and IL-13 in Human Monocytes. Journal of Immunology, 2000, 164, 3862-3869.	0.4	128
49	2-Arylpropionic CXC Chemokine Receptor 1 (CXCR1) Ligands as Novel Noncompetitive CXCL8 Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 4312-4331.	2.9	115
50	Distinct Transcriptional Programs Activated by Interleukin-10 with or without Lipopolysaccharide in Dendritic Cells: Induction of the B Cell-Activating Chemokine, CXC Chemokine Ligand 13. Journal of Immunology, 2004, 172, 7031-7042.	0.4	113
51	Iron levels in polarized macrophages: Regulation of immunity and autoimmunity. Autoimmunity Reviews, 2012, 11, 883-889.	2.5	109
52	Identification of serum and tissue micro-RNA expression profiles in different stages of inflammatory bowel disease. Clinical and Experimental Immunology, 2013, 173, 250-258.	1.1	109
53	Silent chemoattractant receptors: D6 as a decoy and scavenger receptor for inflammatory CC chemokines. Cytokine and Growth Factor Reviews, 2005, 16, 679-686.	3.2	102
54	The MYD88-Independent Pathway Is Not Mobilized in Human Neutrophils Stimulated via TLR4. Journal of Immunology, 2007, 178, 7344-7356.	0.4	102

#	Article	IF	CITATIONS
55	Neutrophils in Gliomas. Frontiers in Immunology, 2017, 8, 1349.	2.2	101
56	Orchestration of macrophage polarization. Blood, 2009, 114, 3135-3136.	0.6	100
57	Role of the chemokine decoy receptor D6 in balancing inflammation, immune activation, and antimicrobial resistance in <i>Mycobacterium tuberculosis</i> infection. Journal of Experimental Medicine, 2008, 205, 2075-2084.	4.2	94
58	Chemokines: a superfamily of chemotactic cytokines. International Journal of Clinical and Laboratory Research, 1996, 26, 69-82.	1.0	90
59	Priming of Human Resting NK Cells by Autologous M1 Macrophages via the Engagement of IL-1β, IFN-β, and IL-15 Pathways. Journal of Immunology, 2015, 195, 2818-2828.	0.4	90
60	Receptors, signal transduction, and spectrum of action of monocyte chemotactic protein-1 and related chemokines. Journal of Leukocyte Biology, 1995, 57, 788-794.	1.5	86
61	Design of Noncompetitive Interleukin-8 Inhibitors Acting on CXCR1 and CXCR2. Journal of Medicinal Chemistry, 2007, 50, 3984-4002.	2.9	86
62	Chapter 5 Expression of Chemokines and Chemokine Receptors in Human Colon Cancer. Methods in Enzymology, 2009, 460, 105-121.	0.4	85
63	Activin A induces dendritic cell migration through the polarized release of CXC chemokine ligands 12 and 14. Blood, 2009, 113, 5848-5856.	0.6	82
64	The Chemokine Decoy Receptor D6 Prevents Excessive Inflammation and Adverse Ventricular Remodeling After Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2206-2213.	1.1	78
65	Chemokine receptors intracellular trafficking. , 2010, 127, 1-8.		77
66	Regulation of D6 chemokine scavenging activity by ligand- and Rab11-dependent surface up-regulation. Blood, 2008, 112, 493-503.	0.6	76
67	Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages. Immunobiology, 2015, 220, 545-554.	0.8	75
68	The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell–mediated resistance to metastasis. Nature Immunology, 2019, 20, 1012-1022.	7.0	75
69	Chemokines and Cancer: A Fatal Attraction. Cancer Cell, 2011, 19, 434-435.	7.7	74
70	Effect of shock waves on macrophages: A possible role in tissue regeneration and remodeling. International Journal of Surgery, 2015, 24, 124-130.	1.1	70
71	Adenosine A2areceptor-mediated, normoxic induction of HIF-1 through PKC and PI-3K-dependent pathways in macrophages. Journal of Leukocyte Biology, 2007, 82, 392-402.	1.5	69
72	ACKR2 in hematopoietic precursors as a checkpoint of neutrophil release and anti-metastatic activity. Nature Communications, 2018, 9, 676.	5.8	68

#	Article	IF	CITATIONS
73	Encapsulated mesenchymal stem cells for in vivo immunomodulation. Leukemia, 2013, 27, 500-503.	3.3	67
74	Atypical chemokine receptors in cancer: friends or foes?. Journal of Leukocyte Biology, 2016, 99, 927-933.	1.5	66
75	Reduced Cell Surface Expression of CCR5 in CCR5Δ32 Heterozygotes Is Mediated by Gene Dosage, Rather Than by Receptor Sequestration. Journal of Biological Chemistry, 2002, 277, 2287-2301.	1.6	65
76	The chemokine system: tuning and shaping by regulation of receptor expression and coupling in polarized responses. Allergy: European Journal of Allergy and Clinical Immunology, 2002, 57, 972-982.	2.7	65
77	Epicardial fat thickness: Relationship with plasma visfatin and plasminogen activator inhibitor-1 levels in visceral obesity. Nutrition, Metabolism and Cardiovascular Diseases, 2008, 18, 523-530.	1.1	65
78	Semaphorin 4A Exerts a Proangiogenic Effect by Enhancing Vascular Endothelial Growth Factor-A Expression in Macrophages. Journal of Immunology, 2012, 188, 4081-4092.	0.4	64
79	Inhibition of Monocyte Chemotaxis to C-C Chemokines by Antisense Oligonucleotide for Cytosolic Phospholipase A2. Journal of Biological Chemistry, 1996, 271, 6010-6016.	1.6	63
80	Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2 nonâ€competitive allosteric inhibitor. British Journal of Pharmacology, 2012, 165, 436-454.	2.7	63
81	β-Arrestin–Dependent Activation of the Cofilin Pathway Is Required for the Scavenging Activity of the Atypical Chemokine Receptor D6. Science Signaling, 2013, 6, ra30.1-11, S1-3.	1.6	63
82	Extracellular and intracellular decoys in the tuning of inflammatory cytokines and Toll-like receptors: the new entry TIR8/SIGIRR. Journal of Leukocyte Biology, 2004, 75, 738-742.	1.5	61
83	Phosphoinositide 3-kinase γ plays a critical role in bleomycin-induced pulmonary inflammation and fibrosis in mice. Journal of Leukocyte Biology, 2010, 89, 269-282.	1.5	61
84	Cancer Cells Exploit Notch Signaling to Redefine a Supportive Cytokine Milieu. Frontiers in Immunology, 2018, 9, 1823.	2.2	60
85	Anti-phospholipid induced murine fetal loss: Novel protective effect of a peptide targeting the β2 glycoprotein I phospholipid-binding site. Implications for human fetal loss. Journal of Autoimmunity, 2012, 38, J209-J215.	3.0	58
86	Self-renewal and phenotypic conversion are the main physiological responses of macrophages to the endogenous estrogen surge. Scientific Reports, 2017, 7, 44270.	1.6	58
87	Synergistic upâ€regulation of MCPâ€2/CCL8 activity is counteracted by chemokine cleavage, limiting its inflammatory and antiâ€ŧumoral effects. European Journal of Immunology, 2009, 39, 843-857.	1.6	57
88	Targeting tumour-associated macrophages. Expert Opinion on Therapeutic Targets, 2007, 11, 1219-1229.	1.5	56
89	Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16937-16942.	3.3	56
90	IL-1β primes IL-8-activated human neutrophils for elastase release, phospholipase D activity, and calcium flux. Journal of Leukocyte Biology, 1996, 59, 427-434.	1.5	54

#	Article	IF	CITATIONS
91	Notch1 regulates chemotaxis and proliferation by controlling the CCâ€chemokine receptors 5 and 9 in T cell acute lymphoblastic leukaemia. Journal of Pathology, 2012, 226, 713-722.	2.1	54
92	Regulation of the immune and inflammatory responses by the 'atypical' chemokine receptor <scp>D6</scp> . Journal of Pathology, 2013, 229, 168-175.	2.1	54
93	A Membrane-proximal Basic Domain and Cysteine Cluster in the C-terminal Tail of CCR5 Constitute a Bipartite Motif Critical for Cell Surface Expression. Journal of Biological Chemistry, 2001, 276, 40133-40145.	1.6	53
94	Infiltration of Tumours by Macrophages and Dendritic Cells: Tumour-Associated Macrophages as a Paradigm for Polarized M2 Mononuclear Phagocytes. Novartis Foundation Symposium, 2008, , 137-148.	1.2	53
95	Anti-phospholipid antibody mediated fetal loss: still an open question from a pathogenic point of view. Lupus, 2010, 19, 453-456.	0.8	53
96	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 339-340.	6.6	53
97	Overview and potential unifying themes of the atypical chemokine receptor family. Journal of Leukocyte Biology, 2016, 99, 883-892.	1.5	52
98	Role of myeloid cells in the immunosuppressive microenvironment in gliomas. Immunobiology, 2020, 225, 151853.	0.8	50
99	Recognition Versus Adaptive Up-regulation and Degradation of CC Chemokines by the Chemokine Decoy Receptor D6 Are Determined by Their N-terminal Sequence. Journal of Biological Chemistry, 2009, 284, 26207-26215.	1.6	49
100	Hepatocyte growth factor enhances CXCR4 expression favoring breast cancer cell invasiveness. Experimental Cell Research, 2005, 310, 176-185.	1.2	48
101	Expression of the α7 nAChR subunit duplicate form (CHRFAM7A) is down-regulated in the monocytic cell line THP-1 on treatment with LPS. Journal of Neuroimmunology, 2011, 230, 74-84.	1.1	48
102	Impact of the anti-inflammatory agent bindarit on the chemokinome: selective inhibition of the monocyte chemotactic proteins. European Cytokine Network, 2008, 19, 119-22.	1.1	46
103	Never Underestimate the Power of a Neutrophil. Immunity, 2009, 31, 698-700.	6.6	44
104	Chemokine Decoy Receptors: Structure–Function and Biological Properties. Current Topics in Microbiology and Immunology, 2010, 341, 15-36.	0.7	44
105	An atypical addition to the chemokine receptor nomenclature: <scp>IUPHAR</scp> Review 15. British Journal of Pharmacology, 2015, 172, 3945-3949.	2.7	43
106	Gene expression profile activated by the chemokine CCL5/RANTES in human neuronal cells. Journal of Neuroscience Research, 2004, 78, 371-382.	1.3	42
107	Control of iron homeostasis as a key component of macrophage polarization. Haematologica, 2010, 95, 1801-1803.	1.7	42
108	Macrophage ferroportin is essential for stromal cell proliferation in wound healing. Haematologica, 2019, 104, 47-58.	1.7	42

#	Article	IF	CITATIONS
109	Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): A phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine, 2020, 59, 102844.	2.7	41
110	Synergism Between Platelet Activating Factor and C-C Chemokines for Arachidonate Release in Human Monocytes. Biochemical and Biophysical Research Communications, 1994, 199, 761-766.	1.0	40
111	Multi-Step Regulation of the TLR4 Pathway by the miR-125a~99b~let-7e Cluster. Frontiers in Immunology, 2018, 9, 2037.	2.2	40
112	Atypical chemokine receptors: from silence to sound. Biochemical Society Transactions, 2013, 41, 231-236.	1.6	39
113	Trafficking to the Plasma Membrane of the Seven-Transmembrane Protein Encoded by Human Herpesvirus 6 U51 Gene Involves a Cell-Specific Function Present in T Lymphocytes. Journal of Virology, 1999, 73, 325-333.	1.5	39
114	CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis. PLoS ONE, 2016, 11, e0166006.	1.1	39
115	Selective Modulation of Protein Kinase A I and II Reveals Distinct Roles in Thyroid Cell Gene Expression and Growth. Molecular Endocrinology, 2006, 20, 3196-3211.	3.7	38
116	Systemic and cellular consequences of macrophage control of iron metabolism. Seminars in Immunology, 2012, 24, 393-398.	2.7	37
117	Synergyâ€inducing chemokines enhance CCR2 ligand activities on monocytes. European Journal of Immunology, 2009, 39, 1118-1128.	1.6	36
118	Expression of the Atypical Chemokine Receptor D6 in Human Alveolar Macrophages in COPD. Chest, 2013, 143, 98-106.	0.4	36
119	Mast Cell–Dependent CD8+ T-cell Recruitment Mediates Immune Surveillance of Intestinal Tumors in ApcMin/+ Mice. Cancer Immunology Research, 2018, 6, 332-347.	1.6	36
120	Chemokine Decoy Receptors: New Players in Reproductive Immunology. Immunological Investigations, 2008, 37, 483-497.	1.0	35
121	Macrophage Metabolism Shapes Angiogenesis in Tumors. Cell Metabolism, 2016, 24, 653-654.	7.2	35
122	Chemokines sound the alarmin: The role of atypical chemokine in inflammation and cancer. Seminars in Immunology, 2018, 38, 63-71.	2.7	35
123	Control of murine Ly6Chigh monocyte traffic and immunosuppressive activities by atypical chemokine receptor D6. Blood, 2012, 119, 5250-5260.	0.6	33
124	ERK-Dependent Downregulation of the Atypical Chemokine Receptor D6 Drives Tumor Aggressiveness in Kaposi Sarcoma. Cancer Immunology Research, 2014, 2, 679-689.	1.6	33
125	Glucocorticoids downregulate TLR4 signaling activity via its direct targeting by miRâ€511â€5p. European Journal of Immunology, 2017, 47, 2080-2089.	1.6	33
126	The tetraspan MS4A family in homeostasis, immunity, and disease. Trends in Immunology, 2021, 42, 764-781.	2.9	33

#	Article	IF	CITATIONS
127	The estrogen–macrophage interplay in the homeostasis of the female reproductive tract. Human Reproduction Update, 2018, 24, 652-672.	5.2	32
128	The atypical chemokine receptor ACKR2 drives pulmonary fibrosis by tuning influx of CCR2 ⁺ and CCR5 ⁺ IFNγ-producing γÎT cells in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L1010-L1025.	1.3	32
129	Inflammatory Reaction and Implantation: the New Entries PTX3 and D6. Placenta, 2008, 29, 129-134.	0.7	31
130	Tuning of Innate Immunity and Polarized Responses by Decoy Receptors. International Archives of Allergy and Immunology, 2003, 132, 109-115.	0.9	30
131	IL-8 induces a specific transcriptional profile in human neutrophils: synergism with LPS for IL-1 production. European Journal of Immunology, 2004, 34, 2286-2292.	1.6	30
132	Chemokines as effector and target molecules in vascular biology. Cardiovascular Research, 2015, 107, 364-372.	1.8	30
133	Regulatory pathways in inflammation. Autoimmunity Reviews, 2007, 7, 8-11.	2.5	29
134	Effect of donepezil on the expression and responsiveness to LPS of CHRNA7 and CHRFAM7A in macrophages: A possible link to the cholinergic anti-inflammatory pathway. Journal of Neuroimmunology, 2019, 332, 155-166.	1.1	29
135	Allosteric inhibitors of chemoattractant receptors: opportunities and pitfalls. Trends in Pharmacological Sciences, 2008, 29, 280-286.	4.0	28
136	Chemokines and Bone Remodeling. International Journal of Immunopathology and Pharmacology, 2008, 21, 485-491.	1.0	26
137	Cancer and Chemokines. Methods in Molecular Biology, 2016, 1393, 87-96.	0.4	25
138	Characterization of MicroRNA Expression Profiles and Identification of Potential Biomarkers in Leprosy. Journal of Clinical Microbiology, 2017, 55, 1516-1525.	1.8	24
139	The atypical chemokine receptor 2 limits renal inflammation and fibrosis in murine progressive immune complex glomerulonephritis. Kidney International, 2018, 93, 826-841.	2.6	24
140	Monocyte Chemotactic Protein-1 (MCP-1): Signal Transduction and Involvement in the Regulation of Macrophage Traffic in Normal and Neoplastic Tissues. Advances in Experimental Medicine and Biology, 1993, 351, 47-54.	0.8	24
141	Differential expression and regulation of MS4A family members in myeloid cells in physiological and pathological conditions. Journal of Leukocyte Biology, 2022, 111, 817-836.	1.5	23
142	Convergent pathways of macrophage polarization: The role of B cells. European Journal of Immunology, 2010, 40, 2131-2133.	1.6	22
143	Migration of dendritic cells across blood and lymphatic endothelial barriers. Thrombosis and Haemostasis, 2006, 95, 22-28.	1.8	20
144	Flow cytometry applications for the analysis of chemokine receptor expression and function. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 292-301.	1.1	20

#	Article	IF	CITATIONS
145	Allosteric Modulation of Chemoattractant Receptors. Frontiers in Immunology, 2016, 7, 170.	2.2	20
146	Selective induction of phospholipase D1 in pathogen-activated human monocytes. Biochemical Journal, 2001, 358, 119-125.	1.7	19
147	Chemokines as Pharmacological Targets. Mini-Reviews in Medicinal Chemistry, 2008, 8, 638-646.	1.1	17
148	MiR-146b Mediates Endotoxin Tolerance in Human Phagocytes. Mediators of Inflammation, 2015, 2015, 1-10.	1.4	17
149	The Atypical Chemokine Receptor 2 Limits Progressive Fibrosis after Acute Ischemic Kidney Injury. American Journal of Pathology, 2019, 189, 231-247.	1.9	17
150	The Chemokine Superfamily: Crosstalk with the IL-1 System. Immunobiology, 1996, 195, 522-549.	0.8	15
151	Differential Effects of Posttranslational Modifications of CXCL8/Interleukin-8 on CXCR1 and CXCR2 Internalization and Signaling Properties. International Journal of Molecular Sciences, 2018, 19, 3768.	1.8	15
152	ACKR2 contributes to pulmonary dysfunction by shaping CCL5:CCR5-dependent recruitment of lymphocytes during influenza A infection in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L655-L670.	1.3	15
153	Selective induction of phospholipase D1 in pathogen-activated human monocytes. Biochemical Journal, 2001, 358, 119.	1.7	13
154	The elegance of a macrophage. Cellular and Molecular Immunology, 2018, 15, 196-198.	4.8	13
155	β-Arrestin1 and β-Arrestin2 Are Required to Support the Activity of the CXCL12/HMGB1 Heterocomplex on CXCR4. Frontiers in Immunology, 2020, 11, 550824.	2.2	13
156	Editorial: Regulation of Inflammation, Its Resolution and Therapeutic Targeting. Frontiers in Immunology, 2017, 8, 415.	2.2	12
157	Regulation of the Chemokine System at the Level of Chemokine Receptor Expression and Signaling Activity. Immunobiology, 2001, 204, 536-542.	0.8	11
158	Chemokines and Their Receptors. Pathology Patterns Reviews, 2005, 123, S82-S95.	0.4	11
159	The chemoattractant decoy receptor D6 as a negative regulator of inflammatory responses. Biochemical Society Transactions, 2006, 34, 1014-1017.	1.6	11
160	The scavenging chemokine receptor ACKR2 has a significant impact on acute mortality rate and early lesion development after traumatic brain injury. PLoS ONE, 2017, 12, e0188305.	1.1	11
161	Aberrant CXCR4 Signaling at Crossroad of WHIM Syndrome and Waldenstrom's Macroglobulinemia. International Journal of Molecular Sciences, 2020, 21, 5696.	1.8	11
162	Non-signaling chemokine receptors: Mechanism of action and role in vivo. Journal of Neuroimmunology, 2008, 198, 14-19.	1.1	10

#	Article	IF	CITATIONS
163	Chapter 11 Role of the Chemokine Scavenger Receptor D6 in Balancing Inflammation and Immune Activation. Methods in Enzymology, 2009, 460, 231-243.	0.4	9
164	Review: Structure–function and biological properties of the atypical chemokine receptor D6. Molecular Immunology, 2013, 55, 87-93.	1.0	9
165	New Insights on the Emerging Genomic Landscape of CXCR4 in Cancer: A Lesson from WHIM. Vaccines, 2020, 8, 164.	2.1	9
166	Colifagina, a Novel Preparation of 8 Lysed Bacteria Ameliorates Experimental Colitis. International Journal of Immunopathology and Pharmacology, 2008, 21, 401-407.	1.0	8
167	Reciprocal interference between the NRF2 and LPS signaling pathways on the immuneâ€metabolic phenotype of peritoneal macrophages. Pharmacology Research and Perspectives, 2020, 8, e00638.	1.1	8
168	Endogenous modification of the chemoattractant CXCL5 alters receptor usage and enhances its activity toward neutrophils and monocytes. Science Signaling, 2021, 14, .	1.6	8
169	Tamoxifen Twists Again: On and Off-Targets in Macrophages and Infections. Frontiers in Pharmacology, 2022, 13, 879020.	1.6	8
170	Shaping and tuning of the chemokine system by regulation of receptor expression and signaling:. Journal of Neuroimmunology, 2000, 107, 174-177.	1.1	7
171	Housekeeping by chemokine scavenging. Blood, 2008, 112, 215-216.	0.6	7
172	Chemokine System: New Inflammatory Markers on the Horizon. European Journal of Inflammation, 2010, 8, 1-6.	0.2	7
173	Control of Cytoskeletal Dynamics by β-Arrestin1/Myosin Vb Signaling Regulates Endosomal Sorting and Scavenging Activity of the Atypical Chemokine Receptor ACKR2. Vaccines, 2020, 8, 542.	2.1	7
174	Atypical chemokine receptor 2: a brake against Kaposi's sarcoma aggressiveness. Oncolmmunology, 2014, 3, e955337.	2.1	6
175	Chemoattractant Receptors and Leukocyte Recruitment: More Than Cell Migration. Science Signaling, 2009, 2, pe10.	1.6	5
176	Migration of dendritic cells across blood and lymphatic endothelial barriers. Thrombosis and Haemostasis, 2006, 95, 22-8.	1.8	5
177	Analysis of G Protein and β-Arrestin Activation in Chemokine Receptors Signaling. Methods in Enzymology, 2016, 570, 421-440.	0.4	4
178	Dissecting Trafficking and Signaling of Atypical Chemokine Receptors. Methods in Enzymology, 2013, 521, 151-168.	0.4	3
179	Atypical matters in myeloid differentiation. Nature Immunology, 2017, 18, 711-712.	7.0	3
180	Tumor-Released Products Promote Bone Marrow-Derived Macrophage Survival and Proliferation. Biomedicines, 2021, 9, 1387.	1.4	3

#	Article	IF	CITATIONS
181	ERα-independent NRF2-mediated immunoregulatory activity of tamoxifen. Biomedicine and Pharmacotherapy, 2021, 144, 112274.	2.5	3
182	Cytokines in Liver Health and Disease. , 2007, , 83-93.		2
183	Chemokine receptors (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
184	The Yin Yang of Cancer Related Inflammation. , 2011, , 11-16.		2
185	D6 as a Decoy and Scavenger Receptor for Inflammatory CC Chemokines in the Skin. Handbook of Systemic Autoimmune Diseases, 2006, , 23-28.	0.1	1
186	The Italian Society of Immunology: past, present and future. European Journal of Immunology, 2010, 40, 2664-2666.	1.6	1
187	Novel Players in Female Fertility: The Long Pentraxin PTX3 and the Chemokine Decoy Receptor D6. Advances in Neuroimmune Biology, 2011, 2, 41-50.	0.7	1
188	Targeting Chemokines in Cancer. Current Immunology Reviews, 2012, 8, 161-169.	1.2	1
189	Role of MicroRNA in Macrophage Activation and Polarization. , 2014, , 545-555.		1
190	The Macrophage Transcriptome. , 2014, , 559-585.		1
191	Macrophages Have a Grip on the Gut. Immunity, 2014, 41, 11-13.	6.6	1
192	Flow Cytometry Detection of Chemokine Receptors for the Identification of Murine Monocyte and Neutrophil Subsets. Methods in Enzymology, 2016, 570, 441-456.	0.4	1
193	Immunotherapeutic early-phase clinical trials and malignant gliomas: a single-center experience and comprehensive immunophenotyping of circulating leukocytes. Neuro-Oncology Advances, 2021, 3, vdab160.	0.4	1
194	Chemokine receptors (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	1
195	Interplay of Inflammation, Immunity, and Organ-Specific Adiposity with Cardiovascular Risk. Mediators of Inflammation, 2014, 2014, 1-2.	1.4	0
196	Atypical Chemokine Receptors. , 2016, , 579-585.		0
197	Chemokine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0