## Giacomo Mazzamuto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8654137/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres.<br>Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 199, 103-110.                        | 2.3  | 69        |
| 2  | Photostable Molecules on Chip: Integrated Sources of Nonclassical Light. ACS Photonics, 2018, 5, 126-132.                                                                                                  | 6.6  | 51        |
| 3  | A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures. Scientific Reports, 2016, 6, 28877.                         | 3.3  | 37        |
| 4  | Universal autofocus for quantitative volumetric microscopy of whole mouse brains. Nature Methods, 2021, 18, 953-958.                                                                                       | 19.0 | 32        |
| 5  | Autofluorescence enhancement for label-free imaging of myelinated fibers in mammalian brains.<br>Scientific Reports, 2021, 11, 8038.                                                                       | 3.3  | 24        |
| 6  | Single-molecule study for a graphene-based nano-position sensor. New Journal of Physics, 2014, 16, 113007.                                                                                                 | 2.9  | 23        |
| 7  | Necklace State Hallmark in Disordered 2D Photonic Systems. ACS Photonics, 2015, 2, 1636-1643.                                                                                                              | 6.6  | 22        |
| 8  | Large-scale, cell-resolution volumetric mapping allows layer-specific investigation of human brain cytoarchitecture. Biomedical Optics Express, 2021, 12, 3684.                                            | 2.9  | 18        |
| 9  | 3D molecular phenotyping of cleared human brain tissues with light-sheet fluorescence microscopy.<br>Communications Biology, 2022, 5, 447.                                                                 | 4.4  | 18        |
| 10 | Photonic bands, superchirality, and inverse design of a chiral minimal metasurface. Nanophotonics, 2019, 8, 2291-2301.                                                                                     | 6.0  | 17        |
| 11 | Fast whole-brain imaging of seizures in zebrafish larvae by two-photon light-sheet microscopy.<br>Biomedical Optics Express, 2022, 13, 1516.                                                               | 2.9  | 16        |
| 12 | High-Fidelity Imaging in Brain-Wide Structural Studies Using Light-Sheet Microscopy. ENeuro, 2018, 5,<br>ENEURO.0124-18.2018.                                                                              | 1.9  | 15        |
| 13 | Deducing effective light transport parameters in optically thin systems. New Journal of Physics, 2016, 18, 023036.                                                                                         | 2.9  | 10        |
| 14 | Comparison of Different Tissue Clearing Methods for Three-Dimensional Reconstruction of Human<br>Brain Cellular Anatomy Using Advanced Imaging Techniques. Frontiers in Neuroanatomy, 2021, 15,<br>752234. | 1.7  | 8         |
| 15 | Diffusive light transport in semitransparent media. Physical Review A, 2016, 94, .                                                                                                                         | 2.5  | 7         |
| 16 | Automatic Segmentation of Neurons in 3D Samples of Human Brain Cortex. Lecture Notes in Computer<br>Science, 2018, , 78-85.                                                                                | 1.3  | 7         |
| 17 | Software Tools for Efficient Processing of High-Resolution 3D Images of Macroscopic Brain Samples. ,<br>2018, , .                                                                                          |      | 5         |
| 18 | Two-photon high-speed light-sheet volumetric imaging of brain activity during sleep in zebrafish                                                                                                           |      | 4         |

Two-photon high larvae. , 2020, , .

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Two-photon light-sheet microscopy for high-speed whole-brain functional imaging of zebrafish neuronal physiology and pathology. , 2020, , .                                                                |     | 4         |
| 20 | Semantic Segmentation of Neuronal Bodies in Fluorescence Microscopy Using a 2D+3D CNN Training Strategy with Sparsely Annotated Data. Lecture Notes in Computer Science, 2020, , 95-99.                    | 1.3 | 3         |
| 21 | Fast volumetric mapping of human brain slices. , 2020, , .                                                                                                                                                 |     | 2         |
| 22 | Advanced Morpho-Functional Analysis on Ventricular and Atrial Tissue Reveals Cross-Bridge Kinetics<br>Alterations and Sarcomere Energetic Impairment in Hcm Patients. Biophysical Journal, 2019, 116, 29a. | 0.5 | 1         |
| 23 | Towards a Full Volumetric Atlas of Cell-specific Neuronal Spatial Organization in the Entire Mouse<br>Brain. , 2018, , .                                                                                   |     | 1         |
| 24 | Fast volumetric mapping of human brain slices. , 2020, , .                                                                                                                                                 |     | 1         |
| 25 | Experimental imaging and Monte Carlo modeling of ultrafast pulse propagation in thin scattering slabs. Journal of Biomedical Optics, 2022, 27, .                                                           | 2.6 | 1         |
| 26 | Coupling of single DBT molecules to a graphene monolayer: proof of principle for a graphene<br>nanoruler. Materials Research Society Symposia Proceedings, 2015, 1728, 16.                                 | 0.1 | 0         |
| 27 | Photostable molecules on chip: Integrated single photon sources for quantum technologies. , 2017, , .                                                                                                      |     | 0         |
| 28 | Whole Heart Cytoarchitecture at Micron-Scale Resolution. Biophysical Journal, 2018, 114, 384a.                                                                                                             | 0.5 | 0         |
| 29 | Structural Mapping of Action Potential Propagation Pathways through Healthy and Diseased Heart.<br>Biophysical Journal, 2020, 118, 493a.                                                                   | 0.5 | 0         |
| 30 | Three-dimensional analysis of human brain cytoarchitectonics by means of a SWITCH/TDE-combined clearing method. , 2019, , .                                                                                |     | 0         |
| 31 | Deep learning strategies for scalable analysis of high-resolution brain imagery. , 2019, , .                                                                                                               |     | 0         |