Andrei V Galukhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8654132/publications.pdf Version: 2024-02-01

ANDREI V GALLIKHIN

#	Article	IF	CITATIONS
1	Problems with Applying the Ozawa–Avrami Crystallization Model to Non-Isothermal Crosslinking Polymerization. Polymers, 2022, 14, 693.	2.0	7
2	Novel adamantane-based dicyanate ester: Synthesis, polymerization kinetics, and thermal properties of resulting polymer. Thermochimica Acta, 2022, 710, 179177.	1.2	7
3	ICTAC Kinetics Committee recommendations for analysis of thermal polymerization kinetics. Thermochimica Acta, 2022, 714, 179243.	1.2	44
4	The Kinetics of Formation of Microporous Polytriazine in Diphenyl Sulfone. Molecules, 2022, 27, 3605.	1.7	4
5	Synthesis and Polymerization Kinetics of Novel Dicyanate Ester Based on Dimer of 4―tert â€butylphenol. Macromolecular Chemistry and Physics, 2021, 222, 2000410.	1.1	10
6	Synthesis and Polymerization Kinetics of Rigid Tricyanate Ester. Polymers, 2021, 13, 1686.	2.0	14
7	Polymerization kinetics of adamantane-based dicyanate ester and thermal properties of resulting polymer. Reactive and Functional Polymers, 2021, 165, 104956.	2.0	19
8	Solvent-induced changes in the reactivity of tricyanate esters undergoing thermal polymerization. Polymer Chemistry, 2021, 12, 6179-6187.	1.9	10
9	Polymerization Kinetics of Cyanate Ester Confined to Hydrophilic Nanopores of Silica Colloidal Crystals with Different Surface-Grafted Groups. Polymers, 2020, 12, 2329.	2.0	13
10	Solid-state polymerization of a novel cyanate ester based on 4-tert-butylcalix[6]arene. Polymer Chemistry, 2020, 11, 4115-4123.	1.9	16
11	Pore-Size Distribution of Silica Colloidal Crystals from Nitrogen Adsorption Isotherms. Langmuir, 2019, 35, 14975-14982.	1.6	13
12	Kinetic and Mechanistic Insights into Thermally Initiated Polymerization of Cyanate Esters with Different Bridging Groups. Macromolecular Chemistry and Physics, 2019, 220, 1900141.	1.1	25
13	Manganese Oxide Nanoparticles Immobilized on Silica Nanospheres as a Highly Efficient Catalyst for Heavy Oil Oxidation. Industrial & Engineering Chemistry Research, 2019, 58, 8990-8995.	1.8	17
14	Synthesis of Cyanate Esters Based on Mono-O-Methylated Bisphenols with Sulfur-Containing Bridges. Molecules, 2019, 24, 177.	1.7	2
15	Porous Structure of Silica Colloidal Crystals. Langmuir, 2019, 35, 2230-2235.	1.6	15
16	Probing the surface of synthetic opals with the vanadyl containing crude oil by using EPR and ENDOR techniques. Magnetic Resonance in Solids, 2019, 21, .	0.2	4
17	Heavy oil oxidation in the nano-porous medium of synthetic opal. RSC Advances, 2018, 8, 18110-18116.	1.7	4
18	W-band EPR of vanadyl complexes aggregates on the surface of Al2O3. IOP Conference Series: Earth and Environmental Science, 2018, 155, 012005.	0.2	1

Andrei V Galukhin

#	Article	IF	CITATIONS
19	In Situ Identification of Various Structural Features of Vanadyl Porphyrins in Crude Oil by High-Field (3.4 T) Electron–Nuclear Double Resonance Spectroscopy Combined with Density Functional Theory Calculations. Energy & Fuels, 2017, 31, 1243-1249.	2.5	39
20	Pyrolysis of Kerogen of Bazhenov Shale: Kinetics and Influence of Inherent Pyrite. Energy & Fuels, 2017, 31, 6777-6781.	2.5	13
21	Catalytic Combustion of Heavy Oil in the Presence of Manganese-Based Submicroparticles in a Quartz Porous Medium. Energy & Fuels, 2017, 31, 11253-11257.	2.5	18
22	Mn-Catalyzed Oxidation of Heavy Oil in Porous Media: Kinetics and Some Aspects of the Mechanism. Energy & Fuels, 2016, 30, 7731-7737.	2.5	35
23	Thermal decomposition of Tatarstan Ashal'cha heavy crude oil and its SARA fractions. Fuel, 2016, 186, 122-127.	3.4	117
24	p-tert-Butylthiacalix[4]arenes equipped with guanidinium fragments: aggregation, cytotoxicity, and DNA binding abilities. RSC Advances, 2016, 6, 32722-32726.	1.7	6
25	Effect of Catalytic Aquathermolysis on High-Molecular-Weight Components of Heavy Oil in the Ashal'cha Field. Chemistry and Technology of Fuels and Oils, 2015, 50, 555-560.	0.2	14
26	Contribution of thermal analysis and kinetics of Siberian and Tatarstan regions crude oils for in situ combustion process. Journal of Thermal Analysis and Calorimetry, 2015, 122, 1375-1384.	2.0	42
27	Catalytic Aquathermolysis of Heavy Oil with Iron Tris(acetylacetonate): Changes of Heavy Oil Composition and <i>in Situ</i> Formation of Magnetic Nanoparticles. Energy & Fuels, 2015, 29, 4768-4773.	2.5	51
28	Investigation of DNA binding abilities of solid lipid nanoparticles based on p-tert-butylthiacalix[4]arene platform. RSC Advances, 2015, 5, 33351-33355.	1.7	7
29	Guanidine-equipped thiacalix[4]arenes: synthesis, interaction with DNA and aggregation properties. Mendeleev Communications, 2014, 24, 82-84.	0.6	13
30	Beer classification based on the array of solid-contact potentiometric sensors with thiacalixarene receptors. Russian Chemical Bulletin, 2014, 63, 223-231.	0.4	3
31	Phosphorylated amino derivatives of thiacalix[4]arene as membrane carriers: synthesis and host–guest molecular recognition of amino, hydroxy and dicarboxylic acids. Journal of Physical Organic Chemistry, 2014, 27, 57-65.	0.9	23
32	Phenylurea-Equipped p-tert-Butylthiacalix[4]Arenes as the Synthetic Receptors for Monocharged Anions. Mendeleev Communications, 2013, 23, 41-43.	0.6	14
33	Pentakis-thiacalix[4]Arenes with Nitrile Fragments: Receptor Properties toward Cations of Some s-and d-metals and Self-assembly of Nanoscale Aggregates. Mendeleev Communications, 2013, 23, 196-198.	0.6	4
34	Cholinesterase Biosensors Based on Screenâ€Printed Electrodes Modified with Coâ€Phtalocyanine and Polycarboxylated Thiacalixarenes. Electroanalysis, 2012, 24, 554-562.	1.5	15
35	Mono-, 1,3-Di- and Tetrasubstituted p-tert-Butylthiacalix[4]arenes Containing Phthalimide Groups: Synthesis and Functionalization with Ester, Amide, Hydrazide and Amino Groups. Macroheterocycles, 2012, 5, 266-274.	0.9	8
36	Influence of Nature of Functional Groups on Interaction of Tetrasubstituted at Lower Rim p-tert-Butyl Thiacalix[4]arenes in 1,3-Alternate Configuration with Model Lipid Membranes. Applied Magnetic Resonance, 2011, 40, 231-243.	0.6	11

#	Article	IF	CITATIONS
37	Synthesis and complexation properties of 1,3-alternate stereoisomers of p-tert-butylthiacalix[4]arenes tetrasubstituted at the lower rim by the phthalimide group. Mendeleev Communications, 2009, 19, 193-195.	0.6	25