Xiao-Nan Wu Or Xiaonan Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8653868/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The cycloaddition reaction of ethylene and methane mediated by Ir+ to generate a half-sandwich structure IrHCp+. Chinese Chemical Letters, 2023, 34, 107196.	4.8	1
2	Conformation Changes of Enkephalin in Coordination with Pb2+ Investigated by Gas Phase Hydrogen/Deuterium Exchange Mass Spectrometry Combined with Theoretical Calculations. Chemical Research in Chinese Universities, 2022, 38, 572-578.	1.3	1
3	Iridium Dimer Anion-Mediated C≡C Triple Bond Cleavage and Successive Dehydrogenation of Acetylene in the Gas Phase. Journal of Physical Chemistry A, 2022, 126, 1711-1717.	1.1	0
4	Infrared photodissociation spectroscopic and theoretical study of HnC4O+ (n = 1, 2) cation clusters in the gas phase. Molecular Physics, 2021, 119, e1879301.	0.8	0
5	Quadruple C–H Bond Activations of Methane by Dinuclear Rhodium Carbide Cation [Rh ₂ C ₃] ⁺ . Jacs Au, 2021, 1, 1631-1638.	3.6	6
6	The Reactive Sites of Methane Activation: A Comparison of IrC3+ with PtC3+. Molecules, 2021, 26, 6028.	1.7	3
7	C/C Exchange in Activation/Coupling Reaction of Acetylene and Methane Mediated by Os ⁺ : A Comparison with Ir ⁺ , Pt ⁺ , and Au ⁺ . Journal of Physical Chemistry Letters, 2020, 11, 8346-8351.	2.1	7
8	Reactions of Transition-Metal Carbyne Cations with Ethylene in the Gas Phase. Journal of Physical Chemistry A, 2020, 124, 2628-2633.	1.1	12
9	Dicarbonyls of Carbon and Methylidyne Cations. Journal of Physical Chemistry A, 2017, 121, 2903-2910.	1.1	5
10	Striking Doping Effects on Thermal Methane Activation Mediated by the Heteronuclear Metal Oxides [<i>X</i> AlO ₄] ^{.+} (<i>X</i> =V, Nb, and Ta). Chemistry - A European Journal, 2017, 23, 788-792.	1.7	21
11	A Tin Analogue of Carbenoid: Isolation and Reactivity of a Lithium Bis(imidazolinâ€2â€imino)stannylenoid. Angewandte Chemie - International Edition, 2016, 55, 6983-6987.	7.2	37
12	Efficient Roomâ€Temperature, Au ⁺ â€Mediated Coupling of a Carbene Ligand with Methane To Generate C ₂ H _{<i>x</i>} (<i>x=</i> 4, 6). Angewandte Chemie - International Edition, 2016, 55, 441-444.	7.2	32
13	Unravelling Mechanistic Aspects of the Gasâ€Phase Ethanol Conversion: An Experimental and Computational Study on the Thermal Reactions of MO ₂ ⁺ (M=Mo, W) with Ethanol. Chemistry - A European Journal, 2016, 22, 3077-3083.	1.7	8
14	Distinct Mechanistic Differences in the Hydrogenâ€Atom Transfer from Methane and Water by the Heteronuclear Oxide Cluster [Ga ₂ MgO ₄] ^{.+} . Angewandte Chemie - International Edition, 2015, 54, 12298-12302.	7.2	25
15	On the Role of the Electronic Structure of the Heteronuclear Oxide Cluster [Ga ₂ Mg ₂ O ₅] ^{.+} in the Thermal Activation of Methane and Ethane: An Unusual Doping Effect. Angewandte Chemie - International Edition, 2015, 54, 5074-5078.	7.2	36
16	"Stripping―the Carbon Atom of Methyl Halide by a Cationic Holmium Complex: A Gasâ€Phase Study. Chemistry - A European Journal, 2015, 21, 14305-14308.	1.7	2
17	On the Mechanisms of Hydrogenâ€Atom Transfer from Water to the Heteronuclear Oxide Cluster [Ga ₂ Mg ₂ O ₅] ^{.+} : Remarkable Electronic Structure Effects. Angewandte Chemie - International Edition, 2015, 54, 11861-11864.	7.2	19
18	lsolation of a germanium(<scp>ii</scp>) cation and a germylene iron carbonyl complex utilizing an imidazolin-2-iminato ligand. Dalton Transactions, 2015, 44, 10952-10956.	1.6	56

#	Article	IF	CITATIONS
19	Carbonâ€Atom Extrusion from Halobenzenes and Its Coupling with a Methylene Ligand to Form Acetylene. Chemistry - A European Journal, 2015, 21, 9629-9631.	1.7	12
20	Highly regioselective hydride transfer, oxidative dehydrogenation, and hydrogen-atom abstraction in the thermal gas-phase chemistry of [Zn(OH)] ⁺ /C ₃ H ₈ . Physical Chemistry Chemical Physics, 2014, 16, 26617-26623.	1.3	11
21	Thermal Ethane Activation by Bare [V ₂ O ₅] ⁺ and [Nb ₂ O ₅] ⁺ Cluster Cations: on the Origin of Their Different Reactivities. Chemistry - A European Journal, 2014, 20, 6672-6677.	1.7	24
22	Hydrogen Atom Abstraction from CH ₄ by Nanosized Vanadium Oxide Cluster Cations. Journal of Physical Chemistry C, 2014, 118, 24062-24071.	1.5	26
23	Reactivity of Oxygen Radical Anions Bound to Scandia Nanoparticles in the Gas Phase: CH Bond Activation. Chemistry - A European Journal, 2014, 20, 1167-1175.	1.7	22
24	Reactivity of Atomic Oxygen Radical Anions Bound to Titania and Zirconia Nanoparticles in the Gas Phase: Low-Temperature Oxidation of Carbon Monoxide. Journal of the American Chemical Society, 2013, 135, 2991-2998.	6.6	73
25	Activation of Multiple Cĩ£¿H Bonds Promoted by Cold in AuNbO ₃ ⁺ Clusters. Angewandte Chemie - International Edition, 2013, 52, 2444-2448.	7.2	54
26	C–H Bond Activation by Oxygen-Centered Radicals over Atomic Clusters. Accounts of Chemical Research, 2012, 45, 382-390.	7.6	249
27	Structures and Reactivity of Oxygenâ€Rich Scandium Cluster Anions ScO _{3–5} ^{â^'} . ChemPhysChem, 2012, 13, 1282-1288.	1.0	29
28	C–H bond activation by nanosized scandium oxide clusters in gas-phase. International Journal of Mass Spectrometry, 2012, 310, 57-64.	0.7	112
29	Collision-Induced Dissociation and Density Functional Theory Studies of CO Adsorption over Zirconium Oxide Cluster Ions: Oxidative and Nonoxidative Adsorption. Journal of Physical Chemistry A, 2011, 115, 5238-5246.	1.1	51
30	Experimental and Theoretical Study of the Reactions between Cerium Oxide Cluster Anions and Carbon Monoxide: Size-Dependent Reactivity of Ce _{<i>n</i>} O _{2<i>n</i>+1} ^{â€"} (<i>n</i> = 1â€"21). Journal of Physical Chemistry C. 2011, 115, 13329-13337.	1.5	76
31	CH Activation on Aluminum–Vanadium Bimetallic Oxide Cluster Anions. Chemistry - A European Journal, 2011, 17, 3449-3457.	1.7	54
32	Hydrogenâ€Atom Abstraction from Methane by Stoichiometric Vanadium–Silicon Heteronuclear Oxide Cluster Cations. Chemistry - A European Journal, 2010, 16, 11463-11470.	1.7	83
33	Hydrogen-atom abstraction from methane by stoichiometric early transition metal oxide cluster cations. Chemical Communications, 2010, 46, 1736.	2.2	101
34	Active sites of stoichiometric cerium oxide cations (CemO2m+) probed by reactions with carbon monoxide and small hydrocarbon molecules. Physical Chemistry Chemical Physics, 2010, 12, 3984.	1.3	141
35	Methane activation by V3PO10Ë™+ and V4O10Ë™+ clusters: A comparative study. Physical Chemistry Chemical Physics, 2010, 12, 12223.	1.3	89
36	Experimental and Theoretical Study of Hydrogen Atom Abstraction from Ethylene by Stoichiometric Zirconium Oxide Clusters. Chinese Journal of Chemical Physics, 2009, 22, 635-641.	0.6	13

#	Article	IF	CITATIONS
37	Theoretical study of partial oxidation of ethylene by vanadium trioxide cluster cation. Science Bulletin, 2009, 54, 2814-2821.	4.3	12