Gary J Gorbsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8653705/publications.pdf

Version: 2024-02-01

94433 102487 5,029 71 37 66 citations h-index g-index papers 80 80 80 5101 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Live Fluorescence Imaging of Chromosome Segregation in Cultured Cells. Methods in Molecular Biology, 2022, 2415, 61-86.	0.9	O
2	More than two populations of microtubules comprise the dynamic mitotic spindle. Journal of Cell Science, $2022,135,.$	2.0	2
3	Dynamic Features of Chromosomal Instability during Culture of Induced Pluripotent Stem Cells. Genes, 2022, 13, 1157.	2.4	2
4	Developing immortal cell lines from <i>Xenopus</i> embryos <i>,</i> four novel cell lines derived from <i>Xenopus tropicalis</i> Open Biology, 2022, 12, .	3.6	4
5	Mps1 promotes poleward chromosome movements in meiotic prometaphase. Molecular Biology of the Cell, 2021, 32, 1020-1032.	2.1	2
6	VTT-006, an anti-mitotic compound, binds to the Ndc80 complex and suppresses cancer cell growth in vitro. Oncoscience, 2021, 8, 134-153.	2.2	1
7	Chondrosarcoma-associated gene 1 (CSAG1) maintains the integrity of the mitotic centrosome in cells with defective p53. Journal of Cell Science, 2020, 133, .	2.0	7
8	CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. Journal of Cell Biology, 2019, 218, 1164-1181.	5.2	21
9	Predictive bioinformatics identifies novel regulators of proliferation in a cancer stem cell model. Stem Cell Research, 2018, 26, 1-7.	0.7	10
10	Multiple determinants and consequences of cohesion fatigue in mammalian cells. Molecular Biology of the Cell, 2018, 29, 1811-1824.	2.1	22
11	Predicting Growth In Cancer Stem Cells. , 2018, , .		O
12	Phosphatase-regulated recruitment of the spindle- and Kinetochore-Associated (Ska) Complex to kinetochores. Biology Open, 2017, 6, 1672-1679.	1.2	18
13	GTSE1 regulates spindle microtubule dynamics to control Aurora B kinase and Kif4A chromokinesin on chromosome arms. Journal of Cell Biology, 2017, 216, 3117-3132.	5.2	39
14	The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. Biology, 2017, 6, 12.	2.8	118
15	The human SKA complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase $1\ \text{to}$ kinetochores. ELife, 2016, 5, .	6.0	64
16	Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nature Reviews Molecular Cell Biology, 2015, 16, 82-94.	37.0	225
17	The spindle checkpoint and chromosome segregation in meiosis. FEBS Journal, 2015, 282, 2471-2487.	4.7	81
18	The spindle and kinetochore–associated (Ska) complex enhances binding of the anaphase-promoting complex/cyclosome (APC/C) to chromosomes and promotes mitotic exit. Molecular Biology of the Cell, 2014, 25, 594-605.	2.1	67

#	Article	IF	Citations
19	Live-Cell Fluorescence Imaging for Phenotypic Analysis of Mitosis. Methods in Molecular Biology, 2014, 1170, 549-562.	0.9	11
20	Cohesion fatigue. Current Biology, 2013, 23, R986-R988.	3.9	27
21	Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Research, 2013, 21, 101-106.	2.2	37
22	Haspin inhibitors reveal centromeric functions of Aurora B in chromosome segregation. Journal of Cell Biology, 2012, 199, 251-268.	5.2	95
23	Cohesion Fatigue Induces Chromatid Separation in Cells Delayed at Metaphase. Current Biology, 2011, 21, 1018-1024.	3.9	149
24	Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Molecular Biology of the Cell, 2011, 22, 1191-1206.	2.1	142
25	Expression of HPV16 E5 produces enlarged nuclei and polyploidy through endoreplication. Virology, 2010, 405, 342-351.	2.4	19
26	Histone H3 Thr-3 Phosphorylation by Haspin Positions Aurora B at Centromeres in Mitosis. Science, 2010, 330, 231-235.	12.6	416
27	Duct Tape for Broken Chromosomes. Cell, 2010, 140, 178-180.	28.9	0
28	Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint. Carcinogenesis, 2009, 30, 1032-1040.	2.8	49
29	A High Throughput, Whole Cell Screen for Small Molecule Inhibitors of the Mitotic Spindle Checkpoint Identifies OM137, a Novel Aurora Kinase Inhibitor. Cancer Research, 2009, 69, 1509-1516.	0.9	26
30	Fine Tuning the Cell Cycle: Activation of the Cdk1 Inhibitory Phosphorylation Pathway during Mitotic Exit. Molecular Biology of the Cell, 2009, 20, 1737-1748.	2.1	92
31	Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell–cell fusion. Virology, 2009, 384, 125-134.	2.4	56
32	ICIS and Aurora B Coregulate the Microtubule Depolymerase Kif2a. Current Biology, 2009, 19, 758-763.	3.9	39
33	Ska3 Is Required for Spindle Checkpoint Silencing and the Maintenance of Chromosome Cohesion in Mitosis. Current Biology, 2009, 19, 1467-1472.	3.9	153
34	The Dynamics of DNA Topoisomerase Ilî± in Living Cells. Methods in Molecular Biology, 2009, 582, 233-244.	0.9	2
35	Multiple mechanisms of chromosome movement in vertebrate cells mediated through the Ndc80 complex and dynein/dynactin. Chromosoma, 2008, 117, 169-179.	2.2	65
36	Shugoshin 1 Plays a Central Role in Kinetochore Assembly and is Required for Kinetochore Targeting of Plk1. Cell Cycle, 2007, 6, 1579-1585.	2.6	46

#	Article	IF	Citations
37	Regulators of chromosome movement and the mitotic spindle checkpoint. FASEB Journal, 2007, 21, A209.	0.5	O
38	Lysed cell models and isolated chromosomes for the study of kinetochore/centromere biochemistry in vitro. Methods, 2006, 38, 52-59.	3.8	2
39	The reversibility of mitotic exit in vertebrate cells. Nature, 2006, 440, 954-958.	27.8	182
40	Cell-based expression cloning for identification of polypeptides that hypersensitize mammalian cells to mitotic arrest. Biological Procedures Online, 2006, 8, 36-43.	2.9	2
41	Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Molecular Cancer Therapeutics, 2006, 5, 2963-2969.	4.1	85
42	Inhibition of TRIP1/S8/hSug1, a component of the human 19S proteasome, enhances mitotic apoptosis induced by spindle poisons. Molecular Cancer Therapeutics, 2006, 5, 29-38.	4.1	11
43	Microtubule Network Is Required for Insulin Signaling through Activation of Akt/Protein Kinase B. Journal of Biological Chemistry, 2006, 281, 39719-39727.	3.4	25
44	Polo-like Kinase 1 Creates the Tension-Sensing 3F3/2 Phosphoepitope and Modulates the Association of Spindle-Checkpoint Proteins at Kinetochores. Current Biology, 2005, 15, 1078-1089.	3.9	140
45	Survivin dynamics increases at centromeres during G2/M phase transition and is regulated by microtubule-attachment and Aurora B kinase activity. Journal of Cell Science, 2004, 117, 4033-4042.	2.0	90
46	PKD2 Interacts and Co-localizes with mDia1 to Mitotic Spindles of Dividing Cells. Journal of Biological Chemistry, 2004, 279, 29728-29739.	3 . 4	107
47	The Vertebrate Ndc80 Complex Contains Spc24 and Spc25 Homologs, which Are Required to Establish and Maintain Kinetochore-Microtubule Attachment. Current Biology, 2004, 14, 131-137.	3.9	153
48	Mitosis: MCAK under the Aura of Aurora B. Current Biology, 2004, 14, R346-R348.	3.9	37
49	The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes and Development, 2003, 17, 101-114.	5.9	224
50	Rapid exchange of mammalian topoisomerase $\hat{\text{III}}$ at kinetochores and chromosome arms in mitosis. Journal of Cell Biology, 2002, 158, 23-29.	5.2	118
51	Rapid microtubule-independent dynamics of Cdc20 at kinetochores and centrosomes in mammalian cells. Journal of Cell Biology, 2002, 158, 841-847.	5. 2	129
52	The Dephosphorylated Form of the Anaphase-Promoting Complex Protein Cdc27/Apc3 Concentrates on Kinetochores and Chromosome Arms in Mitosis. Cell Cycle, 2002, 1, 287-297.	2.6	40
53	Interactions between Protein Kinase CK2 and Pin1. Journal of Biological Chemistry, 2002, 277, 23054-23064.	3.4	88
54	Inhibition of Aurora B Kinase Blocks Chromosome Segregation, Overrides the Spindle Checkpoint, and Perturbs Microtubule Dynamics in Mitosis. Current Biology, 2002, 12, 900-905.	3.9	296

#	Article	IF	Citations
55	The dephosphorylated form of the anaphase-promoting complex protein Cdc27/Apc3 concentrates on kinetochores and chromosome arms in mitosis. Cell Cycle, 2002, 1, 282-92.	2.6	19
56	The mitotic spindle checkpoint. Current Biology, 2001, 11, R1001-R1004.	3.9	51
57	Elevating the level of Cdc34/Ubc3 ubiquitin-conjugating enzyme in mitosis inhibits association of CENP-E with kinetochores and blocks the metaphase alignment of chromosomes. Journal of Cell Biology, 2001, 154, 707-718.	5.2	27
58	Kinetochore ?memory? of spindle checkpoint signaling in lysed mitotic cells. Cytoskeleton, 2000, 46, 146-156.	4.4	6
59	The 3F3/2 anti-phosphoepitope antibody binds the mitotically phosphorylated anaphase-promoting complex/cyclosome. Current Biology, 2000, 10, R850-R852.	3.9	30
60	Differences in Spindle Association of the Mitotic Checkpoint Protein Mad2 in Mammalian Spermatogenesis and Oogenesis. Developmental Biology, 2000, 225, 112-123.	2.0	50
61	Protein dynamics at the kinetochore: cell cycle regulation of the metaphase to anaphase transition. FASEB Journal, 1999, 13, S231-4.	0.5	14
62	Mad2 binding by phosphorylated kinetochores links error detection and checkpoint action in mitosis. Current Biology, 1999, 9, 649-652.	3.9	55
63	Microinjection of Antibody to Mad2 Protein into Mammalian Cells in Mitosis Induces Premature Anaphase. Journal of Cell Biology, 1998, 141, 1193-1205.	5.2	211
64	Active MAP Kinase in Mitosis: Localization at Kinetochores and Association with the Motor Protein CENP-E. Journal of Cell Biology, 1998, 142, 1547-1558.	5.2	207
65	Mammalian p55CDC Mediates Association of the Spindle Checkpoint Protein Mad2 with the Cyclosome/Anaphase-promoting Complex, and is Involved in Regulating Anaphase Onset and Late Mitotic Events. Journal of Cell Biology, 1998, 141, 1393-1406.	5.2	243
66	Casein Kinase II Catalyzes a Mitotic Phosphorylation on Threonine 1342 of Human DNA Topoisomerase Ill^{\pm} , Which Is Recognized by the 3F3/2 Phosphoepitope Antibody. Journal of Biological Chemistry, 1998, 273, 30622-30629.	3.4	41
67	Cell cycle checkpoints: Arresting progress in mitosis. BioEssays, 1997, 19, 193-197.	2.5	103
68	Kinetochores, microtubules and the metaphase checkpoint. Trends in Cell Biology, 1995, 5, 143-148.	7.9	68
69	Cell-Cycle-Regulated Localization of Tyrosine and Threonine Phosphoepitopes at the Kinetochores of Mitotic Chromosomes. Experimental Cell Research, 1995, 221, 249-260.	2.6	20
70	Chromosome motion in mitosis. BioEssays, 1992, 14, 73-80.	2.5	42
71	Desmosomal Adhesion in Development. American Zoologist, 1986, 26, 535-540.	0.7	1