
## Shinji Fukuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8653702/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF                | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 1  | Species-specific debromination of BDE99 in teleost fish: The relationship between debromination ability and bioaccumulation patterns of PBDEs. Science of the Total Environment, 2022, 806, 151265.                      | 3.9               | 3             |
| 2  | Artificial lateral line for aquatic habitat modelling: An example for Lefua echigonia. Ecological<br>Informatics, 2021, 65, 101388.                                                                                      | 2.3               | 11            |
| 3  | Habitat evaluation for the endangered fish species <i>Lefua echigonia</i> in the Yagawa River, Japan.<br>Journal of Ecohydraulics, 2019, 4, 147-157.                                                                     | 1.6               | 7             |
| 4  | Evaluation of water dynamics of contour-levee irrigation system in sloped rice fields in Colombia.<br>Agricultural Water Management, 2019, 217, 107-118.                                                                 | 2.4               | 8             |
| 5  | Intra- and intercontinental variation in the functional responses of a high impact alien invasive fish.<br>Biological Invasions, 2019, 21, 1751-1762.                                                                    | 1.2               | 15            |
| 6  | International contributions in advancing ecohydraulics. Journal of Ecohydraulics, 2019, 4, 86-87.                                                                                                                        | 1.6               | 0             |
| 7  | MODELLING HABITAT SUITABILITY OF <i>LEFUA ECHIGONIA</i> USING RANDOM FORESTS. Journal of Japan<br>Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2019, 75, I_541-I_546.                                      | 0.0               | 0             |
| 8  | Estimating Soil Water Contents from Field Water Tables for Potential Rice Irrigation Criteria under Contour-Levee Irrigation Systems. Environmental Control in Biology, 2019, 57, 15-21.                                 | 0.3               | 1             |
| 9  | Effect of Storage Conditions on the Postharvest Quality Changes of Fresh Mango Fruits for Export during Transportation. Environmental Control in Biology, 2018, 56, 39-44.                                               | 0.3               | 6             |
| 10 | Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics, 2018, 43, 24-37. | 2.3               | 17            |
| 11 | Flow regime shapes seasonal patterns of fish species richness and abundance in main and branch channels of a rice irrigation system. Paddy and Water Environment, 2018, 16, 783-793.                                     | 1.0               | 2             |
| 12 | Quality Changes in Fresh Mango Fruits ( <i>Mangifera indica</i> L. â€`Nam Dok Mai') Under<br>Actual Distribution Temperature Profile from Thailand to Japan. Environmental Control in Biology,<br>2018, 56, 45-49.       | 0.3               | 12            |
| 13 | Effects of water temperature and light intensity on the acute toxicity of herbicide thiobencarb to a green alga, Raphidocelis subcapitata. Environmental Science and Pollution Research, 2018, 25, 25363-25370.          | 2.7               | 3             |
| 14 | Random Forests as a Tool for Analyzing Partial Drought Stress Based on CO <sub>2</sub><br>Concentrations in the Rootzone of Longan Trees. Environmental Control in Biology, 2018, 56, 25-31.                             | 0.3               | 1             |
| 15 | Sensors and Monitoring for Production and Distribution of a Tropical Fruit. Environmental Control in Biology, 2018, 56, 23-24.                                                                                           | 0.3               | 0             |
| 16 | Comparing four methods for decision-tree induction: A case study on the invasive Iberian gudgeon () Tj ETQq0 0                                                                                                           | 0 rgBT /O\<br>2:3 | verlock 10 Tf |

| 17 | Data prevalence matters when assessing species' responses using data-driven species distribution models. Ecological Informatics, 2016, 32, 69-78.                               | 2.3 | 25 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 18 | Assessment of Depth Measurement Using an Acoustic Doppler Current Profiler and a CTD Profiler in a<br>Small River in Japan. Lecture Notes in Computer Science, 2016, , 308-316. | 1.0 | 1  |

Shinji Fukuda

| #  | Article                                                                                                                                                                                                                                        | IF               | CITATIONS             |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| 19 | Online Monitoring System on Controlled Irrigation Experiment for Export Quality Mango in Thailand.<br>Lecture Notes in Computer Science, 2016, , 328-334.                                                                                      | 1.0              | 2                     |
| 20 | Sensitivity-Based Calibration of the Soil and Water Assessment Tool for Hydrologic Cycle Simulation in the Cong Watershed, Vietnam. Water Environment Research, 2015, 87, 735-750.                                                             | 1.3              | 4                     |
| 21 | Modeling the Relationship between Hormone Dynamics and Off-season Flowering of Litchi by Using<br>Random Forests. Agriculture and Agricultural Science Procedia, 2015, 5, 9-16.                                                                | 0.6              | 2                     |
| 22 | Assessment of spatial habitat heterogeneity by coupling data-driven habitat suitability models with a 2D hydrodynamic model in small-scale streams. Ecological Informatics, 2015, 29, 147-155.                                                 | 2.3              | 23                    |
| 23 | Comparison of the growth traits of a commercial pioneer tree species, paper mulberry (Broussonetia) Tj ETQq1 1<br>mechanisms underlying shade-intolerance. Agroforestry Systems, 2014, 88, 907-919.                                            | 0.784314<br>0.9  | rgBT /Overl<br>4      |
| 24 | Elevated water temperature reduces the acute toxicity of the widely used herbicide diuron to a green<br>alga, Pseudokirchneriella subcapitata. Environmental Science and Pollution Research, 2014, 21,<br>1064-1070.                           | 2.7              | 26                    |
| 25 | Application of a simple genetic algorithm for the calibration of aquatic ecosystem model of an agricultural pond. Paddy and Water Environment, 2014, 12, 1-15.                                                                                 | 1.0              | 1                     |
| 26 | Modelling the relationship between peel colour and the quality of fresh mango fruit using Random<br>Forests. Journal of Food Engineering, 2014, 131, 7-17.                                                                                     | 2.7              | 42                    |
| 27 | Dynamics of Water Qualities under the Anaerobic and Reductive State in an Organically Polluted Closed Water Body. Journal of Rainwater Catchment Systems, 2014, 20, 49-55.                                                                     | 0.2              | 5                     |
| 28 | Habitat prediction and knowledge extraction for spawning European grayling (Thymallus thymallus) Tj ETQq0 0 0<br>47, 1-6.                                                                                                                      | rgBT /Ove<br>1.9 | erlock 10 Tf .<br>111 |
| 29 | Effects of data prevalence on species distribution modelling using a genetic takagi-sugeno fuzzy system. , 2013, , .                                                                                                                           |                  | 0                     |
| 30 | Modelling the distribution of the panâ€continental invasive fish <i>Pseudorasbora parva</i> based on<br>landscape features in the northern Kyushu Island, Japan. Aquatic Conservation: Marine and<br>Freshwater Ecosystems, 2013, 23, 901-910. | 0.9              | 7                     |
| 31 | Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit<br>yields under different irrigation regimes. Agricultural Water Management, 2013, 116, 142-150.                                                | 2.4              | 76                    |
| 32 | Predicting potential hybridization between native and non-native Rhodeus ocellatus subspecies: the<br>implications for conservation of a pure native population in northern Kyushu, Japan. Aquatic<br>Invasions, 2013, 8, 219-229.             | 0.6              | 8                     |
| 33 | Evaluation of Soil Water Management Difference in Mango Orchards between Thailand and Japan.<br>American Journal of Plant Sciences, 2013, 04, 182-187.                                                                                         | 0.3              | 2                     |
| 34 | DO ABSENCE DATA MATTER WHEN MODELLING FISH HABITAT PREFERENCE USING A GENETIC TAKAGI-SUGENO FUZZY MODEL?. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2012, 20, 233-245.                                       | 0.9              | 3                     |
| 35 | Effect of aggregation functions on the habitat preference modelling using a genetic Takagi-Sugeno fuzzy system. , 2012, , .                                                                                                                    |                  | 1                     |
| 36 | A short review on the application of computational intelligence and machine learning in the                                                                                                                                                    |                  | 1                     |

bioenvironmental sciences., 2012,,.

Shinji Fukuda

| #  | Article                                                                                                                                                                                                                      | IF                | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 37 | Abundance versus presence/absence data for modelling fish habitat preference with a genetic<br>Takagi–Sugeno fuzzy system. Environmental Monitoring and Assessment, 2012, 184, 6159-6171.                                    | 1.3               | 25           |
| 38 | Predicting distributions of seven bitterling fishes in northern Kyushu, Japan. Ichthyological Research, 2012, 59, 124-133.                                                                                                   | 0.5               | 18           |
| 39 | A discussion on the accuracy-complexity relationship in modelling fish habitat preference using genetic Takagi-Sugeno fuzzy systems. , 2011, , .                                                                             |                   | 1            |
| 40 | Assessing the applicability of fuzzy neural networks for habitat preference evaluation of Japanese medaka (Oryzias latipes). Ecological Informatics, 2011, 6, 286-295.                                                       | 2.3               | 19           |
| 41 | Effect of model formulation on the optimization of a genetic Takagi–Sugeno fuzzy system for fish<br>habitat suitability evaluation. Ecological Modelling, 2011, 222, 1401-1413.                                              | 1.2               | 52           |
| 42 | Evaluating the potential for invasion by alien freshwater fishes in northern Kyushu Island, Japan,<br>using the Fish Invasiveness Scoring Kit. Ichthyological Research, 2011, 58, 382-387.                                   | 0.5               | 33           |
| 43 | Assessing the effects of zero abundance data on habitat preference modelling using a genetic<br>Takagi-Sugeno fuzzy model. , 2011, , .                                                                                       |                   | 2            |
| 44 | Modelling Fish Habitat Preference with a Genetic Algorithm-Optimized Takagi-Sugeno Model Based on<br>Pairwise Comparisons. Advances in Intelligent and Soft Computing, 2011, , 375-387.                                      | 0.2               | 0            |
| 45 | The application of entropy for detecting behavioral responses in Japanese medaka ( <i>Oryzias) Tj ETQq1 1 0.7</i>                                                                                                            | 84314.rgBT<br>2.1 | /Oygrlock 10 |
| 46 | Effect of data quality on habitat preference evaluation for Japanese medaka (Oryzias latipes) using a simple genetic fuzzy system. , 2010, , .                                                                               |                   | 5            |
| 47 | A genetic Takagi-Sugeno fuzzy system for fish habitat preference modelling. , 2010, , .                                                                                                                                      |                   | 1            |
| 48 | Consideration of fuzziness: Is it necessary in modelling fish habitat preference of Japanese medaka<br>(Oryzias latipes)?. Ecological Modelling, 2009, 220, 2877-2884.                                                       | 1.2               | 48           |
| 49 | Coelomycete systematics with special reference to Colletotrichum. Mycoscience, 2008, 49, 373-378.                                                                                                                            | 0.3               | 6            |
| 50 | Prediction ability and sensitivity of artificial intelligence-based habitat preference models for<br>predicting spatial distribution of Japanese medaka (Oryzias latipes). Ecological Modelling, 2008, 215,<br>301-313.      | 1.2               | 31           |
| 51 | Assessing Nonlinearity in Fish Habitat Preference of Japanese Medaka (Oryzias latipes) Using Genetic<br>Algorithm ^ ^ndash; Optimized Habitat Prediction Models. Japan Agricultural Research Quarterly,<br>2008, 42, 97-107. | 0.1               | 14           |
| 52 | Fuzzy neural network model for habitat prediction and HEP for habitat quality estimation focusing<br>on Japanese medaka (Oryzias latipes) in agricultural canals. Paddy and Water Environment, 2006, 4,<br>119-124.          | 1.0               | 19           |
| 53 | Numerical quantification of the significance of aquatic vegetation affecting spatial distribution of<br>Japanese medaka (Oryzias latipes) in an agricultural canal. Landscape and Ecological Engineering, 2006,<br>2, 65-80. | 0.7               | 13           |
|    |                                                                                                                                                                                                                              |                   |              |