
Shinji Fukuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8653702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Habitat prediction and knowledge extraction for spawning European grayling (Thymallus thymallus) Tj ETQq1 47, 1-6.	1 0.784314 1.9	rgBT /Overloc 111
2	Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes. Agricultural Water Management, 2013, 116, 142-150.	2.4	76
3	Effect of model formulation on the optimization of a genetic Takagi–Sugeno fuzzy system for fish habitat suitability evaluation. Ecological Modelling, 2011, 222, 1401-1413.	1.2	52
4	Consideration of fuzziness: Is it necessary in modelling fish habitat preference of Japanese medaka (Oryzias latipes)?. Ecological Modelling, 2009, 220, 2877-2884.	1.2	48
5	Modelling the relationship between peel colour and the quality of fresh mango fruit using Random Forests. Journal of Food Engineering, 2014, 131, 7-17.	2.7	42
6	Evaluating the potential for invasion by alien freshwater fishes in northern Kyushu Island, Japan, using the Fish Invasiveness Scoring Kit. Ichthyological Research, 2011, 58, 382-387.	0.5	33
7	Prediction ability and sensitivity of artificial intelligence-based habitat preference models for predicting spatial distribution of Japanese medaka (Oryzias latipes). Ecological Modelling, 2008, 215, 301-313.	1.2	31
8	Elevated water temperature reduces the acute toxicity of the widely used herbicide diuron to a green alga, Pseudokirchneriella subcapitata. Environmental Science and Pollution Research, 2014, 21, 1064-1070.	2.7	26
9	Abundance versus presence/absence data for modelling fish habitat preference with a genetic Takagi–Sugeno fuzzy system. Environmental Monitoring and Assessment, 2012, 184, 6159-6171.	1.3	25
10	Data prevalence matters when assessing species' responses using data-driven species distribution models. Ecological Informatics, 2016, 32, 69-78.	2.3	25
11	Assessment of spatial habitat heterogeneity by coupling data-driven habitat suitability models with a 2D hydrodynamic model in small-scale streams. Ecological Informatics, 2015, 29, 147-155.	2.3	23
12	Comparing four methods for decision-tree induction: A case study on the invasive Iberian gudgeon () Tj ETQq(0 0 0 rggT /O	verlgck 10 Tf
13	Fuzzy neural network model for habitat prediction and HEP for habitat quality estimation focusing on Japanese medaka (Oryzias latipes) in agricultural canals. Paddy and Water Environment, 2006, 4, 119-124.	1.0	19
14	Assessing the applicability of fuzzy neural networks for habitat preference evaluation of Japanese medaka (Oryzias latipes). Ecological Informatics, 2011, 6, 286-295.	2.3	19
15	Predicting distributions of seven bitterling fishes in northern Kyushu, Japan. Ichthyological Research, 2012, 59, 124-133.	0.5	18
16	Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics, 2018, 43, 24-37.	2.3	17
17	The application of entropy for detecting behavioral responses in Japanese medaka (<i>Oryzias) Tj ETQq1 1 0.7</i>	784314 rgBT 2.1	/Oyerlock 10

¹⁸ Intra- and intercontinental variation in the functional responses of a high impact alien invasive fish. Biological Invasions, 2019, 21, 1751-1762.

Shinji Fukuda

#	Article	IF	CITATIONS
19	Assessing Nonlinearity in Fish Habitat Preference of Japanese Medaka (Oryzias latipes) Using Genetic Algorithm ^ ^ndash; Optimized Habitat Prediction Models. Japan Agricultural Research Quarterly, 2008, 42, 97-107.	0.1	14
20	Numerical quantification of the significance of aquatic vegetation affecting spatial distribution of Japanese medaka (Oryzias latipes) in an agricultural canal. Landscape and Ecological Engineering, 2006, 2, 65-80.	0.7	13
21	Quality Changes in Fresh Mango Fruits (<i>Mangifera indica</i> L. â€~Nam Dok Mai') Under Actual Distribution Temperature Profile from Thailand to Japan. Environmental Control in Biology, 2018, 56, 45-49.	0.3	12
22	Artificial lateral line for aquatic habitat modelling: An example for Lefua echigonia. Ecological Informatics, 2021, 65, 101388.	2.3	11
23	Evaluation of water dynamics of contour-levee irrigation system in sloped rice fields in Colombia. Agricultural Water Management, 2019, 217, 107-118.	2.4	8
24	Predicting potential hybridization between native and non-native Rhodeus ocellatus subspecies: the implications for conservation of a pure native population in northern Kyushu, Japan. Aquatic Invasions, 2013, 8, 219-229.	0.6	8
25	Modelling the distribution of the panâ€continental invasive fish <i>Pseudorasbora parva</i> based on landscape features in the northern Kyushu Island, Japan. Aquatic Conservation: Marine and Freshwater Ecosystems, 2013, 23, 901-910.	0.9	7
26	Habitat evaluation for the endangered fish species <i>Lefua echigonia</i> in the Yagawa River, Japan. Journal of Ecohydraulics, 2019, 4, 147-157.	1.6	7
27	Coelomycete systematics with special reference to Colletotrichum. Mycoscience, 2008, 49, 373-378.	0.3	6
28	Effect of Storage Conditions on the Postharvest Quality Changes of Fresh Mango Fruits for Export during Transportation. Environmental Control in Biology, 2018, 56, 39-44.	0.3	6
29	Effect of data quality on habitat preference evaluation for Japanese medaka (Oryzias latipes) using a simple genetic fuzzy system. , 2010, , .		5
30	Dynamics of Water Qualities under the Anaerobic and Reductive State in an Organically Polluted Closed Water Body. Journal of Rainwater Catchment Systems, 2014, 20, 49-55.	0.2	5
31	Comparison of the growth traits of a commercial pioneer tree species, paper mulberry (Broussonetia) Tj ETQq1 1 mechanisms underlying shade-intolerance. Agroforestry Systems, 2014, 88, 907-919.	0.784314 0.9	rgBT /Over 4
32	Sensitivity-Based Calibration of the Soil and Water Assessment Tool for Hydrologic Cycle Simulation in the Cong Watershed, Vietnam. Water Environment Research, 2015, 87, 735-750.	1.3	4
33	DO ABSENCE DATA MATTER WHEN MODELLING FISH HABITAT PREFERENCE USING A GENETIC TAKAGI-SUGENO FUZZY MODEL?. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2012, 20, 233-245.	0.9	3
34	Effects of water temperature and light intensity on the acute toxicity of herbicide thiobencarb to a green alga, Raphidocelis subcapitata. Environmental Science and Pollution Research, 2018, 25, 25363-25370.	2.7	3
35	Species-specific debromination of BDE99 in teleost fish: The relationship between debromination ability and bioaccumulation patterns of PBDEs. Science of the Total Environment, 2022, 806, 151265.	3.9	3
36	Assessing the effects of zero abundance data on habitat preference modelling using a genetic Takagi-Sugeno fuzzy model. , 2011, , .		2

Shinji Fukuda

#	Article	IF	CITATIONS
37	Modeling the Relationship between Hormone Dynamics and Off-season Flowering of Litchi by Using Random Forests. Agriculture and Agricultural Science Procedia, 2015, 5, 9-16.	0.6	2
38	Flow regime shapes seasonal patterns of fish species richness and abundance in main and branch channels of a rice irrigation system. Paddy and Water Environment, 2018, 16, 783-793.	1.0	2
39	Evaluation of Soil Water Management Difference in Mango Orchards between Thailand and Japan. American Journal of Plant Sciences, 2013, 04, 182-187.	0.3	2
40	Online Monitoring System on Controlled Irrigation Experiment for Export Quality Mango in Thailand. Lecture Notes in Computer Science, 2016, , 328-334.	1.0	2
41	A genetic Takagi-Sugeno fuzzy system for fish habitat preference modelling. , 2010, , .		1
42	A discussion on the accuracy-complexity relationship in modelling fish habitat preference using genetic Takagi-Sugeno fuzzy systems. , 2011, , .		1
43	Effect of aggregation functions on the habitat preference modelling using a genetic Takagi-Sugeno fuzzy system. , 2012, , .		1
44	A short review on the application of computational intelligence and machine learning in the bioenvironmental sciences. , 2012, , .		1
45	Application of a simple genetic algorithm for the calibration of aquatic ecosystem model of an agricultural pond. Paddy and Water Environment, 2014, 12, 1-15.	1.0	1
46	Assessment of Depth Measurement Using an Acoustic Doppler Current Profiler and a CTD Profiler in a Small River in Japan. Lecture Notes in Computer Science, 2016, , 308-316.	1.0	1
47	Random Forests as a Tool for Analyzing Partial Drought Stress Based on CO ₂ Concentrations in the Rootzone of Longan Trees. Environmental Control in Biology, 2018, 56, 25-31.	0.3	1
48	Estimating Soil Water Contents from Field Water Tables for Potential Rice Irrigation Criteria under Contour-Levee Irrigation Systems. Environmental Control in Biology, 2019, 57, 15-21.	0.3	1
49	Effects of data prevalence on species distribution modelling using a genetic takagi-sugeno fuzzy system. , 2013, , .		0
50	International contributions in advancing ecohydraulics. Journal of Ecohydraulics, 2019, 4, 86-87.	1.6	0
51	Modelling Fish Habitat Preference with a Genetic Algorithm-Optimized Takagi-Sugeno Model Based on Pairwise Comparisons. Advances in Intelligent and Soft Computing, 2011, , 375-387.	0.2	0
52	Sensors and Monitoring for Production and Distribution of a Tropical Fruit. Environmental Control in Biology, 2018, 56, 23-24.	0.3	0
53	MODELLING HABITAT SUITABILITY OF <i>LEFUA ECHIGONIA</i> USING RANDOM FORESTS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2019, 75, I_541-I_546.	0.0	0