Sergei V Morozov

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8653357/sergei-v-morozov-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 67
 105,510
 44
 70

 papers
 citations
 h-index
 g-index

 70
 115,707
 13.2
 7.67

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
67	Twisted monolayer and bilayer graphene for vertical tunneling transistors. <i>Applied Physics Letters</i> , 2021 , 118, 183106	3.4	2
66	Electrically Controlled Thermal Radiation from Reduced Graphene Oxide Membranes. <i>ACS Applied Materials & Material</i>	9.5	4
65	Symmetry of diffraction patterns of two-dimensional crystal structures. <i>Ultramicroscopy</i> , 2021 , 228, 11	3336	
64	On the Role of Structural Imperfections of Graphene in Resonant Tunneling through Localized States in the h-BN Barrier of van-der-Waals Heterostructures. <i>Semiconductors</i> , 2020 , 54, 291-296	0.7	
63	Electronic phase separation in multilayer rhombohedral graphite. <i>Nature</i> , 2020 , 584, 210-214	50.4	31
62	Giant oscillations in a triangular network of one-dimensional states in marginally twisted graphene. <i>Nature Communications</i> , 2019 , 10, 4008	17.4	36
61	Tunneling in Graphene/h-BN/Graphene Heterostructures through Zero-Dimensional Levels of Defects in h-BN and Their Use as Probes to Measure the Density of States of Graphene. <i>JETP Letters</i> , 2019 , 109, 482-489	1.2	4
60	Composite super-moir[lattices in double-aligned graphene heterostructures. <i>Science Advances</i> , 2019 , 5, eaay8897	14.3	36
59	Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. <i>Nature Electronics</i> , 2018 , 1, 344-349	28.4	167
58	Tunnel spectroscopy of localised electronic states in hexagonal boron nitride. <i>Communications Physics</i> , 2018 , 1,	5.4	25
57	High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. <i>Science</i> , 2017 , 357, 181-184	33.3	83
56	Temperature-driven single-valley Dirac fermions in HgTe quantum wells. <i>Physical Review B</i> , 2017 , 96,	3.3	23
55	High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. <i>Nature Nanotechnology</i> , 2017 , 12, 223-227	28.7	723
54	Phonon-Assisted Resonant Tunneling of Electrons in Graphene-Boron Nitride Transistors. <i>Physical Review Letters</i> , 2016 , 116, 186603	7.4	63
53	Macroscopic self-reorientation of interacting two-dimensional crystals. <i>Nature Communications</i> , 2016 , 7, 10800	17.4	86
52	Temperature-driven massless Kane fermions in HgCdTe crystals. <i>Nature Communications</i> , 2016 , 7, 1257	' 617.4	47
51	High thermal conductivity of hexagonal boron nitride laminates. 2D Materials, 2016, 3, 011004	5.9	41

(2011-2016)

50	Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures. <i>Science</i> , 2016 , 353, 575-9	33.3	63
49	Ultrasensitive gas detection of large-area boron-doped graphene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 14527-32	11.5	146
48	Resonant tunnelling between the chiral Landau states of twisted graphene lattices. <i>Nature Physics</i> , 2015 , 11, 1057-1062	16.2	49
47	Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. <i>Nature Nanotechnology</i> , 2014 , 9, 808-13	28.7	341
46	Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. <i>Nature Nanotechnology</i> , 2013 , 8, 100-3	28.7	1342
45	Interaction phenomena in graphene seen through quantum capacitance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 3282-6	11.5	197
44	Strong light-matter interactions in heterostructures of atomically thin films. <i>Science</i> , 2013 , 340, 1311-4	33.3	1850
43	Scanning gate microscopy on a graphene quantum point contact. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2012 , 44, 1002-1004	3	6
42	How close can one approach the Dirac point in graphene experimentally?. Nano Letters, 2012, 12, 4629-	34 1.5	136
41	Strong Coulomb drag and broken symmetry in double-layer graphene. <i>Nature Physics</i> , 2012 , 8, 896-901	16.2	303
40	Field-effect tunneling transistor based on vertical graphene heterostructures. <i>Science</i> , 2012 , 335, 947-5	5033.3	1991
39	Electron tunneling through ultrathin boron nitride crystalline barriers. <i>Nano Letters</i> , 2012 , 12, 1707-10	11.5	579
38	New effects in graphene with high carrier mobility. <i>Physics-Uspekhi</i> , 2012 , 55, 408-412	2.8	7
37	High-yield production and transfer of graphene flakes obtained by anodic bonding. <i>ACS Nano</i> , 2011 , 5, 7700-6	16.7	37
36	Dirac cones reshaped by interaction effects in suspended graphene. <i>Nature Physics</i> , 2011 , 7, 701-704	16.2	577
35	Micrometer-scale ballistic transport in encapsulated graphene at room temperature. <i>Nano Letters</i> , 2011 , 11, 2396-9	11.5	1203
34	Tunable metalihsulator transition in double-layer graphene heterostructures. <i>Nature Physics</i> , 2011 , 7, 958-961	16.2	417
33	Giant nonlocality near the Dirac point in graphene. <i>Science</i> , 2011 , 332, 328-30	33.3	217

32	Interaction-driven spectrum reconstruction in bilayer graphene. Science, 2011, 333, 860-3	33.3	226
31	Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. <i>Applied Physics Letters</i> , 2010 , 97, 153102	3.4	123
30	Electronic properties of a biased graphene bilayer. Journal of Physics Condensed Matter, 2010, 22, 1755	03 .8	121
29	From one electron to one hole: quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. <i>Small</i> , 2010 , 6, 1469-73	11	88
28	TRANSVERSE SPIN TRANSPORT IN GRAPHENE. International Journal of Modern Physics B, 2009 , 23, 264	1 - 2:646	5
27	Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. <i>Solid State Communications</i> , 2009 , 149, 1068-1071	1.6	152
26	Control of graphene's properties by reversible hydrogenation: evidence for graphane. <i>Science</i> , 2009 , 323, 610-3	33.3	3338
25	Effect of a high-kappa environment on charge carrier mobility in graphene. <i>Physical Review Letters</i> , 2009 , 102, 206603	7.4	304
24	Molecular doping of graphene. <i>Nano Letters</i> , 2008 , 8, 173-7	11.5	907
23	Giant intrinsic carrier mobilities in graphene and its bilayer. <i>Physical Review Letters</i> , 2008 , 100, 016602	7.4	2509
22	Graphene-based liquid crystal device. <i>Nano Letters</i> , 2008 , 8, 1704-8	11.5	1319
21	Electron transport in graphene. <i>Physics-Uspekhi</i> , 2008 , 51, 744-748	2.8	59
20	Electronic properties of graphene. Physica Status Solidi (B): Basic Research, 2007, 244, 4106-4111	1.3	229
19	Detection of individual gas molecules adsorbed on graphene. <i>Nature Materials</i> , 2007 , 6, 652-5	27	6263
18	Room-temperature quantum Hall effect in graphene. <i>Science</i> , 2007 , 315, 1379	33.3	2342
17	Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. <i>Physical Review Letters</i> , 2007 , 99, 216802	7.4	1524
16	Submicron sensors of local electric field with single-electron resolution at room temperature. <i>Applied Physics Letters</i> , 2006 , 88, 013901	3.4	69
15	Strong suppression of weak localization in graphene. <i>Physical Review Letters</i> , 2006 , 97, 016801	7·4	734

LIST OF PUBLICATIONS

14	Unconventional quantum Hall effect and Berry phase of 20 bilayer graphene. <i>Nature Physics</i> , 2006 , 2, 177-180	16.2	1621
13	Two-dimensional atomic crystals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 10451-3	11.5	8888
12	Ferromagnetic domain wall on nanometer scale. <i>Journal of Physics: Conference Series</i> , 2005 , 17, 101-107	7 0.3	1
11	Two-dimensional electron and hole gases at the surface of graphite. <i>Physical Review B</i> , 2005 , 72,	3.3	131
10	Two-dimensional gas of massless Dirac fermions in graphene. <i>Nature</i> , 2005 , 438, 197-200	50.4	16518
9	Intrinsic Pinning of a Ferromagnetic Domain Wall in Yttrium Iron Garnet Films with Strong Uniaxial Anisotropy. <i>Journal of Low Temperature Physics</i> , 2005 , 139, 65-72	1.3	4
8	METALLIC AND SEMICONDUCTOR HALL MICROPROBES FOR WIDE TEMPERATURE RANGE APPLICATIONS. <i>International Journal of Nanoscience</i> , 2004 , 03, 123-130	0.6	O
7	COERCIVITY OF SINGLE PINNING CENTER MEASURED BY HALL MICROMAGNETOMETRY. International Journal of Nanoscience, 2004 , 03, 87-94	0.6	2
6	Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-9	33.3	47045
5	Submicron probes for Hall magnetometry over the extended temperature range from helium to room temperature. <i>Journal of Applied Physics</i> , 2003 , 93, 10053-10057	2.5	36
4	Conductance anomalies in gated V-groove quantum wires. <i>Nanotechnology</i> , 2002 , 13, 487-490	3.4	4
3	Effect of channel doping on the low-frequency noise in GaN/AlGaN heterostructure field-effect transistors. <i>Applied Physics Letters</i> , 1999 , 75, 2064-2066	3.4	31
2	Low flicker-noise GaN/AlGaN heterostructure field-effect transistors for microwave communications. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 1999 , 47, 1413-1417	4.1	66
1	Electron tunneling through single-barrier heterostructures in a magnetic field. <i>Physical Review B</i> , 1994 , 50, 4897-4900	3.3	9