Robert J Hickey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/865324/publications.pdf

Version: 2024-02-01

40 papers 1,486 citations

393982 19 h-index 315357 38 g-index

43 all docs 43 docs citations

43 times ranked

2159 citing authors

#	Article	IF	Citations
1	Lewis Adduct-Induced Phase Transitions in Polymer/Solvent Mixtures. ACS Polymers Au, 2022, 2, 35-41.	1.7	2
2	Investigating the morphological transitions in an associative surfactant ternary system. Soft Matter, 2022, 18, 2611-2633.	1.2	4
3	Nanostructured block copolymer muscles. Nature Nanotechnology, 2022, 17, 752-758.	15.6	53
4	Investigating Nanoparticle Organization in Polymer Matrices during Reaction-Induced Phase Transitions and Material Processing. ACS Applied Materials & Early: Interfaces, 2021, 13, 42104-42113.	4.0	7
5	Fabricating Robust Constructs with Internal Phase Nanostructures via Liquidâ€inâ€Liquid 3D Printing. Macromolecular Rapid Communications, 2021, 42, e2100445.	2.0	9
6	Cocrystalline Polymer Films Exhibiting Second-Order Nonlinear Optical Properties. ACS Macro Letters, 2021, 10, 1216-1222.	2.3	3
7	Controlling nanostructure and mechanical properties in triblock copolymer/monomer blends via reaction-induced phase transitions. Soft Matter, 2021, 17, 1505-1512.	1.2	8
8	Influence of Hydrotropes on the Solubilities and Diffusivities of Redox-Active Organic Compounds for Aqueous Flow Batteries. ACS Omega, 2021, 6, 30800-30810.	1.6	11
9	Zwitterions Raise the Dielectric Constant of Soft Materials. Physical Review Letters, 2021, 127, 228001.	2.9	24
10	Effect of Chemical Substituents Attached to the Zwitterion Cation on Dielectric Constant. Journal of Chemical Physics, 2021, 155, 244505.	1.2	2
11	Current status and future directions of self-assembled block copolymer membranes for molecular separations. Soft Matter, 2021, 17, 10405-10415.	1.2	8
12	Influence of block sequence on the colloidal self-assembly of poly(norbornene)- <i>block</i> poly(ethylene oxide) amphiphilic block polymers using rapid injection processing. Polymer Chemistry, 2020, 11, 375-384.	1.9	9
13	Artificial water channels enable fast and selective water permeation through water-wire networks. Nature Nanotechnology, 2020, 15, 73-79.	15.6	111
14	Simultaneous Reduction and Polymerization of Graphene Oxide/Styrene Mixtures To Create Polymer Nanocomposites with Tunable Dielectric Constants. ACS Applied Nano Materials, 2020, 3, 962-968.	2.4	28
15	Surface-Initiated Ring-Opening Metathesis Polymerization: A Method for Synthesizing Polymer-Functionalized Nanoparticles Exhibiting Semicrystalline Properties and Diverse Macromolecular Architectures. Macromolecules, 2020, 53, 8216-8232.	2.2	19
16	Nanoparticle-Induced Self-Assembly of Block Copolymers into Nanoporous Films at the Air–Water Interface. ACS Nano, 2020, 14, 12203-12209.	7.3	20
17	Solvent-Responsive and Reversible Structural Coloration in Nanostructured Block Polymer Films. Macromolecules, 2020, 53, 5711-5719.	2.2	18
18	Deciphering the Complex Phase Behavior during Polymerization-Induced Nanostructural Transitions of a Block Polymer/Monomer Blend. Macromolecules, 2020, 53, 835-843.	2.2	19

#	Article	IF	CITATIONS
19	Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. Nature Materials, 2020, 19, 347-354.	13.3	59
20	$\mbox{\ensuremath{\mbox{\scriptsize (i)}}}$ In situ $\mbox{\ensuremath{\mbox{\scriptsize (i)}}}$ polymerization and polymer grafting to stabilize polymer-functionalized nanoparticles in polymer matrices. Journal of Applied Physics, 2020, 127, .	1.1	14
21	Biomimetic Separation of Transport and Matrix Functions in Lamellar Block Copolymer Channel-Based Membranes. ACS Nano, 2019, 13, 8292-8302.	7.3	37
22	Solvent-non-solvent rapid-injection for preparing nanostructured materials from micelles to hydrogels. Nature Communications, 2019, 10, 3855.	5.8	30
23	Rapid Stabilization of Immiscible Fluids using Nanostructured Interfaces via Surfactant Association. Physical Review Letters, 2019, 122, 178003.	2.9	20
24	Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes. Faraday Discussions, 2018, 209, 179-191.	1.6	15
25	Porous Vesicles with Extrusion‶unable Permeability and Pore Size from Mixed Solutions of PEO–PPO–PEO Triblock Copolymers. Macromolecular Chemistry and Physics, 2018, 219, 1700620.	1.1	3
26	Polymerization-Induced Nanostructural Transitions Driven by In Situ Polymer Grafting. ACS Macro Letters, 2018, 7, 822-827.	2.3	21
27	Unique selectivity trends of highly permeable PAP[5] water channel membranes. Faraday Discussions, 2018, 209, 193-204.	1.6	13
28	Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nature Communications, 2018, 9, 2294.	5.8	95
29	Structure–Conductivity Relationships in Ordered and Disordered Salt-Doped Diblock Copolymer/Homopolymer Blends. Macromolecules, 2016, 49, 6928-6939.	2.2	61
30	Phase Behavior of Diblock Copolymer–Homopolymer Ternary Blends: Congruent First-Order Lamellar–Disorder Transition. Macromolecules, 2016, 49, 7928-7944.	2.2	30
31	Structure, viscoelasticity, and interfacial dynamics of a model polymeric bicontinuous microemulsion. Soft Matter, 2016, 12, 53-66.	1.2	45
32	Directional Self-Assembly of Ligand-Stabilized Gold Nanoparticles into Hollow Vesicles through Dynamic Ligand Rearrangement. Langmuir, 2015, 31, 4299-4304.	1.6	24
33	Size-Controlled Self-Assembly of Superparamagnetic Polymersomes. ACS Nano, 2014, 8, 495-502.	7.3	117
34	Controlling the Location of Nanoparticles in Colloidal Assemblies of Amphiphilic Polymers by Tuning Nanoparticle Surface Chemistry. ACS Macro Letters, 2013, 2, 107-111.	2.3	60
35	Low-Dimensional Nanoparticle Clustering in Polymer Micelles and Their Transverse Relaxivity Rates. ACS Nano, 2013, 7, 5824-5833.	7.3	48
36	Preparation and Characterization of DNA Block Copolymer Assemblies Loaded with Nanoparticles. Methods in Molecular Biology, 2013, 1025, 207-224.	0.4	0

ROBERT J HICKEY

#	Article	IF	CITATIONS
37	Spiky Gold Nanoshells: Synthesis and Enhanced Scattering Properties. Journal of Physical Chemistry C, 2012, 116, 10318-10324.	1.5	70
38	Controlling the Radial Position of Nanoparticles in Amphiphilic Block-Copolymer Assemblies. Journal of Physical Chemistry C, 2011, 115, 7836-7842.	1.5	21
39	Controlling the Self-Assembly Structure of Magnetic Nanoparticles and Amphiphilic Block-Copolymers: From Micelles to Vesicles. Journal of the American Chemical Society, 2011, 133, 1517-1525.	6.6	307
40	Morphological Transitions of Blockâ€Copolymer Bilayers via Nanoparticle Clustering. Small, 2010, 6, 48-51.	5.2	36