En Yin Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8652824/publications.pdf

Version: 2024-02-01

		279487	377514
77	1,519	23	34
papers	citations	h-index	g-index
70	70	70	1747
78	78	78	1747
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Trimethylamine N-oxide promotes hyperoxaluria-induced calcium oxalate deposition and kidney injury by activating autophagy. Free Radical Biology and Medicine, 2022, 179, 288-300.	1.3	15
2	rhADAMTS13 reduces oxidative stress by cleaving VWF in ischaemia/reperfusionâ€induced acute kidney injury. Acta Physiologica, 2022, 234, e13778.	1.8	6
3	Longâ€term predialysis blood pressure variability and outcomes in hemodialysis patients. Journal of Clinical Hypertension, 2022, , .	1.0	5
4	Autoimmune Podocytopathies: A Novel Sub-Group of Diseases from Childhood Idiopathic Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2022, , ASN.2021111469.	3.0	3
5	Heteroplasmic and homoplasmic m.616T>C in mitochondria tRNAPhe promote isolated chronic kidney disease and hyperuricemia. JCI Insight, 2022, 7, .	2.3	7
6	A critical role of the podocyte cytoskeleton in the pathogenesis of glomerular proteinuria and autoimmune podocytopathies. Acta Physiologica, 2022, 235, .	1.8	7
7	Nitric Oxide Signalling in Descending Vasa Recta after Hypoxia/Re-Oxygenation. International Journal of Molecular Sciences, 2022, 23, 7016.	1.8	4
8	ADAMTS13 inhibits oxidative stress and ameliorates progressive chronic kidney disease following ischaemia/reperfusion injury. Acta Physiologica, 2021, 231, e13586.	1.8	9
9	High phosphate impairs arterial endothelial function through AMPKâ€related pathways in mouse resistance arteries. Acta Physiologica, 2021, 231, e13595.	1.8	11
10	SARSâ€CoVâ€2 effects on the reninâ€angiotensinâ€aldosterone system, therapeutic implications. Acta Physiologica, 2021, 231, e13608.	1.8	15
11	Renovascular effects of inorganic nitrate following ischemia-reperfusion of the kidney. Redox Biology, 2021, 39, 101836.	3.9	13
12	Role of soluble guanylyl cyclase in renal afferent and efferent arterioles. American Journal of Physiology - Renal Physiology, 2021, 320, F193-F202.	1.3	6
13	Podocyte apoptosis in diabetic nephropathy by BASP1 activation of the p53 pathway via WT1. Acta Physiologica, 2021, 232, e13634.	1.8	15
14	Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II–induced hypertension. Redox Biology, 2021, 46, 102115.	3.9	86
15	circHIPK3 Exacerbates Folic Acid-Induced Renal Tubulointerstitial Fibrosis by Sponging miR-30a. Frontiers in Physiology, 2021, 12, 715567.	1.3	11
16	Mosaic PKHD1 in Polycystic Kidneys Caused Aberrant Protein Expression in the Mitochondria and Lysosomes. Frontiers in Medicine, 2021, 8, 743150.	1.2	3
17	Acute Kidney Injury Sensitizes the Brain Vasculature to Ang II (Angiotensin II) Constriction via FGFBP1 (Fibroblast Growth Factor Binding Protein 1). Hypertension, 2020, 76, 1924-1934.	1.3	11
18	Reactive oxygen species in renal vascular function. Acta Physiologica, 2020, 229, e13477.	1.8	28

#	Article	IF	CITATIONS
19	Preoperative Serum Fibrinogen is Associated With Acute Kidney Injury after Cardiac Valve Replacement Surgery. Scientific Reports, 2020, 10, 6403.	1.6	7
20	Endothelial Scaffolding Protein ENH (Enigma Homolog Protein) Promotes PHLPP2 (Pleckstrin) Tj ETQq0 0 0 rgB and eNOS (Endothelial NO Synthase) Promoting Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1705-1721.	T /Overloc 1.1	k 10 Tf 50 712 22
21	NaHCO ₃ Dilates Mouse Afferent Arteriole Via Na ⁺ /HCO ₃ ^{â°'} Cotransporters NBCs. Hypertension, 2019, 74, 1104-1112.	1.3	11
22	ADAMTS13 protects mice against renal ischemia-reperfusion injury by reducing inflammation and improving endothelial function. American Journal of Physiology - Renal Physiology, 2019, 316, F134-F145.	1.3	25
23	Fenofibrate improves vascular endothelial function and contractility in diabetic mice. Redox Biology, 2019, 20, 87-97.	3.9	36
24	Nucleoside/nucleotide reverse transcriptase inhibitors attenuate angiogenesis and lymphangiogenesis by impairing receptor tyrosine kinases signalling in endothelial cells. British Journal of Pharmacology, 2018, 175, 1241-1259.	2.7	20
25	Blood Pressure Control by a Secreted FGFBP1 (Fibroblast Growth Factor–Binding Protein). Hypertension, 2018, 71, 160-167.	1.3	19
26	Osthole Ameliorates Renal Fibrosis in Mice by Suppressing Fibroblast Activation and Epithelial-Mesenchymal Transition. Frontiers in Physiology, 2018, 9, 1650.	1.3	22
27	High Salt Enhances Reactive Oxygen Species and Angiotensin II Contractions of Glomerular Afferent Arterioles From Mice With Reduced Renal Mass. Hypertension, 2018, 72, 1208-1216.	1.3	31
28	Glucose dilates renal afferent arterioles via glucose transporter-1. American Journal of Physiology - Renal Physiology, 2018, 315, F123-F129.	1.3	8
29	Enhanced Renal Afferent Arteriolar Reactive Oxygen Species and Contractility to Endothelin-1 Are Associated with Canonical Wnt Signaling in Diabetic Mice. Kidney and Blood Pressure Research, 2018, 43, 860-871.	0.9	8
30	Tempol Protects Against Acute Renal Injury by Regulating PI3K/Akt/mTOR and GSK3Î ² Signaling Cascades and Afferent Arteriolar Activity. Kidney and Blood Pressure Research, 2018, 43, 904-913.	0.9	26
31	Superoxide and hydrogen peroxide counterregulate myogenic contractions in renal afferent arterioles from a mouse model of chronic kidney disease. Kidney International, 2017, 92, 625-633.	2.6	20
32	Role of intratubular pressure during the ischemic phase in acute kidney injury. American Journal of Physiology - Renal Physiology, 2017, 312, F1158-F1165.	1.3	19
33	Highâ€salt diet induces outward remodelling of efferent arterioles in mice with reduced renal mass. Acta Physiologica, 2017, 219, 654-661.	1.8	11
34	câ€Jun Nâ€terminal Kinase mediates prostaglandinâ€induced sympathoexcitation in rats with chronic heart failure by reducing <scp>GAD</scp> 1 and <scp>GABRA</scp> 1 expression. Acta Physiologica, 2017, 219, 494-509.	1.8	3
35	Ethanol Extract of Root of <i>Prunus persica </i> Inhibited the Growth of Liver Cancer Cell HepG2 by Inducing Cell Cycle Arrest and Migration Suppression. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-7.	0.5	9
36	Abstract 070: Canonical Wnt Signaling Mediates Enhanced Renal Afferent Arteriolar Reactive Oxygen Species and Contractility in Diabetic Mice. Hypertension, 2017, 70, .	1.3	0

#	Article	IF	CITATIONS
37	Targeting Dynamin 2 as a Novel Pathway to Inhibit Cardiomyocyte Apoptosis Following Oxidative Stress. Cellular Physiology and Biochemistry, 2016, 39, 2121-2134.	1.1	19
38	Increased hydrogen peroxide impairs angiotensin <scp>II</scp> contractions of afferent arterioles in mice after renal ischaemia–reperfusion injury. Acta Physiologica, 2016, 218, 136-145.	1.8	29
39	Differential effects of superoxide and hydrogen peroxide on myogenic signaling, membrane potential, and contractions of mouse renal afferent arterioles. American Journal of Physiology - Renal Physiology, 2016, 310, F1197-F1205.	1.3	28
40	Inhibition of Nitric Oxide Synthase 1 Induces Salt-Sensitive Hypertension in Nitric Oxide Synthase $1\hat{l}\pm$ Knockout and Wild-Type Mice. Hypertension, 2016, 67, 792-799.	1.3	28
41	Protective Effect of Tempol on Acute Kidney Injury Through PI3K/Akt/Nrf2 Signaling Pathway. Kidney and Blood Pressure Research, 2016, 41, 129-138.	0.9	69
42	Sympathoexcitation in Rats With Chronic Heart Failure Depends on Homeobox D10 and MicroRNA-7b Inhibiting GABBR1 Translation in Paraventricular Nucleus. Circulation: Heart Failure, 2016, 9, e002261.	1.6	6
43	Functional networks of aging markers in the glomeruli of IgA nephropathy: a new therapeutic opportunity. Oncotarget, 2016, 7, 33616-33626.	0.8	22
44	Remodeling of Afferent Arterioles From Mice With Oxidative Stress Does Not Account for Increased Contractility but Does Limit Excessive Wall Stress. Hypertension, 2015, 66, 550-556.	1.3	18
45	Blood lipids affect rat islet blood flow regulation through \hat{l}^2 (sub>3-adrenoceptors. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E653-E663.	1.8	8
46	<i>In Vivo</i> Twoâ€photon Fluorescence Microscopy Reveals Disturbed Cerebral Capillary Blood Flow and Increased Susceptibility to Ischemic Insults in Diabetic Mice. CNS Neuroscience and Therapeutics, 2014, 20, 816-822.	1.9	38
47	Sex-specific prevalence of fatty liver disease and associated metabolic factors in Wuhan, south central China. European Journal of Gastroenterology and Hepatology, 2014, 26, 1015-1021.	0.8	40
48	Parametric contrast-enhanced ultrasound as an early predictor of radiation-based therapeutic response for lymph node metastases of nasopharyngeal carcinoma. Molecular and Clinical Oncology, 2014, 2, 666-672.	0.4	7
49	Prevalence and associated metabolic factors of fatty liver disease in the elderly. Experimental Gerontology, 2013, 48, 705-709.	1.2	58
50	Interactions between adenosine, angiotensin II and nitric oxide on the afferent arteriole influence sensitivity of the tubuloglomerular feedback. Frontiers in Physiology, 2013, 4, 187.	1.3	23
51	Abstract 376: Prolonged Excess of Superoxide in Mouse Afferent Arterioles Causes Remodeling and Enhances Myogenic and Angiotensin II Contractions. Hypertension, 2013, 62, .	1.3	0
52	Abstract 29: Hydrogen Peroxide Impairs Myogenic Response of Afferent Arterioles from Mice with the Reduce Renal Mass Model of Chronic Kidney Disease. Hypertension, 2013, 62, .	1.3	0
53	Renal afferent arteriolar and tubuloglomerular feedback reactivity in mice with conditional deletions of adenosine 1 receptors. American Journal of Physiology - Renal Physiology, 2012, 303, F1166-F1175.	1.3	21
54	Effects of the antioxidant drug tempol on renal oxygenation in mice with reduced renal mass. American Journal of Physiology - Renal Physiology, 2012, 303, F64-F74.	1.3	36

#	Article	IF	CITATIONS
55	p47 ^{phox} Is Required for Afferent Arteriolar Contractile Responses to Angiotensin II and Perfusion Pressure in Mice. Hypertension, 2012, 59, 415-420.	1.3	45
56	Endothelin type A and B receptors in the control of afferent and efferent arterioles in mice. Nephrology Dialysis Transplantation, 2011, 26, 779-789.	0.4	36
57	Superoxide Modulates Myogenic Contractions of Mouse Afferent Arterioles. Hypertension, 2011, 58, 650-656.	1.3	49
58	Pressure induces intracellular calcium changes in juxtaglomerular cells in perfused afferent arterioles. Hypertension Research, 2011, 34, 942-948.	1.5	13
59	Superoxide modulates myogenic contractions of mouse afferent arterioles. FASEB Journal, 2011, 25, .	0.2	0
60	Myogenic Responses of Mouse Isolated Perfused Renal Afferent Arterioles. Hypertension, 2010, 55, 983-989.	1.3	31
61	Superoxide Dismutase 1 Limits Renal Microvascular Remodeling and Attenuates Arteriole and Blood Pressure Responses to Angiotensin II via Modulation of Nitric Oxide Bioavailability. Hypertension, 2010, 56, 907-913.	1.3	66
62	Norepinephrine increases calcium sensitivity of mouse afferent arteriole, thereby enhancing angiotensin Il–mediated vasoconstriction. Kidney International, 2009, 76, 953-959.	2.6	16
63	Role of NOX2 in the regulation of afferent arteriole responsiveness. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R72-R79.	0.9	58
64	Enhanced tubuloglomerular feedback in mice with vascular overexpression of A ₁ adenosine receptors. American Journal of Physiology - Renal Physiology, 2009, 297, F1256-F1264.	1.3	16
65	Myogenic Responses of Mouse Isolated Perfused Renal Afferent Arterioles: Effect of Salt Intake and Reduced Renal Mass. FASEB Journal, 2009, 23, 804.3.	0.2	1
66	Norepinephrine Treatment Enhances the Constriction of the Afferent Arterioles to Angiotensin II by Increasing the Calcium Sensitivity. FASEB Journal, 2009, 23, 804.2.	0.2	0
67	Uridine adenosine tetraphosphate acts as an autocrine hormone affecting glomerular filtration rate. Journal of Molecular Medicine, 2008, 86, 333-340.	1.7	24
68	C-peptide constricts pancreatic islet arterioles in diabetic, but not normoglycaemic mice. Diabetes/Metabolism Research and Reviews, 2008, 24, 165-168.	1.7	6
69	Nitric Oxide Deficiency and Increased Adenosine Response of Afferent Arterioles in Hydronephrotic Mice With Hypertension. Hypertension, 2008, 51, 1386-1392.	1.3	11
70	Angiotensin IIâ€adenosine interaction via receptors and intracellular calcium in afferent arterioles. FASEB Journal, 2008, 22, 737.2.	0.2	0
71	Adenosine enhances long term the contractile response to angiotensin II in afferent arterioles. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R2232-R2242.	0.9	15
72	Endothelin-1 and pancreatic islet vasculature: studies in vivo and on isolated, vascularly perfused pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1616-E1623.	1.8	30

En Yin Lai

#	Article	IF	CITATIONS
73	Adenosine triphosphate increases the reactivity of the afferent arteriole to low concentrations of norepinephrine. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R2225-R2231.	0.9	12
74	Endothelinâ€1 and pancreatic islet vasculature: studies in vivo and on isolated, vascularly perfused pancreatic islets. FASEB Journal, 2007, 21, A483.	0.2	0
75	Adenosine Restores Angiotensin Il–Induced Contractions by Receptor-Independent Enhancement of Calcium Sensitivity in Renal Arterioles. Circulation Research, 2006, 99, 1117-1124.	2.0	52
76	ANGIOTENSIN II-NITRIC OXIDE INTERACTION IN GLOMERULAR ARTERIOLES. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 410-414.	0.9	27
77	Angiotensin II sensitivity of afferent glomerular arterioles in endothelin-1 transgenic mice. Nephrology Dialysis Transplantation, 2005, 20, 2681-2689.	0.4	9