Khalid Ferji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8652502/publications.pdf

Version: 2024-02-01

516710 454955 36 916 16 30 citations h-index g-index papers 36 36 36 1087 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Hybrid polymer/lipid vesicles: Influence of polymer architecture and molar mass on line tension. Biophysical Journal, 2022, 121, 61-67.	0.5	3
2	Tear of lipid membranes by nanoparticles. Soft Matter, 2022, 18, 3318-3322.	2.7	3
3	Multicompartment Vesicles: A Key Intermediate Structure in Polymerization-Induced Self-Assembly of Graft Copolymers. Macromolecules, 2022, 55, 4268-4275.	4.8	11
4	Effect of Silica Nanoparticles in Xanthan Gum Solutions: Evolution of Viscosity over Time. Nanomaterials, 2022, 12, 1906.	4.1	3
5	Membrane reinforcement in giant hybrid polymer lipid vesicles achieved by controlling the polymer architecture. Soft Matter, 2021, 17, 83-89.	2.7	11
6	Doxorubicin Intracellular Release <i>Via</i> External UV Irradiation of Dextran- <i>g</i> -poly(<i>o</i> -nitrobenzyl acrylate) Photosensitive Nanoparticles. ACS Applied Bio Materials, 2021, 4, 2742-2751.	4.6	9
7	COVID-19 infection and nanomedicine applications for development of vaccines and therapeutics: An overview and future perspectives based on polymersomes. European Journal of Pharmacology, 2021, 896, 173930.	3. 5	23
8	Mechanistic Insights into Oxygen Tolerance of Graphitic Carbon Nitride-Mediated Heterogeneous Photoinduced Electron Transfer-Reversible Addition Fragmentation Chain Transfer Polymerization. ACS Applied Polymer Materials, 2021, 3, 3649-3658.	4.4	14
9	Direct Access to Polysaccharide-Based Vesicles with a Tunable Membrane Thickness in a Large Concentration Window via Polymerization-Induced Self-Assembly. Biomacromolecules, 2021, 22, 3128-3137.	5.4	23
10	Nanoparticles and Gut Microbiota in Colorectal Cancer. Frontiers in Nanotechnology, 2021, 3, .	4.8	7
11	Original Bio-Based Antioxidant Poly(meth)acrylate from Gallic Acid-Based Monomers. ACS Sustainable Chemistry and Engineering, 2021, 9, 11458-11468.	6.7	11
12	Dextran-Coated Latex Nanoparticles via Photo-RAFT Mediated Polymerization Induced Self-Assembly. Polymers, 2021, 13, 4064.	4.5	11
13	Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides. Angewandte Chemie - International Edition, 2020, 59, 622-626.	13.8	129
14	Synergistic Effects of Nanomedicine Targeting TNFR2 and DNA Demethylation Inhibitor—An Opportunity for Cancer Treatment. Cells, 2020, 9, 33.	4.1	16
15	Self-assembly of amphiphilic copolymers containing polysaccharide: PISA <i>versus</i> nanoprecipitation, and the temperature effect. Polymer Chemistry, 2020, 11, 4729-4740.	3.9	25
16	Synthesis of Thermoresponsive Copolymers with Tunable UCSTâ€Type Phase Transition Using Aqueous Photoâ€RAFT Polymerization. Macromolecular Rapid Communications, 2020, 41, e2000058.	3.9	21
17	Switchable Lipid Provides pH-Sensitive Properties to Lipid and Hybrid Polymer/Lipid Membranes. Polymers, 2020, 12, 637.	4.5	15
18	Amphiphilic Nucleobase-Containing Polypeptide Copolymersâ€"Synthesis and Self-Assembly. Polymers, 2020, 12, 1357.	4.5	5

#	Article	IF	CITATIONS
19	Obtention of Giant Unilamellar Hybrid Vesicles by Electroformation and Measurement of their Mechanical Properties by Micropipette Aspiration. Journal of Visualized Experiments, 2020, , .	0.3	5
20	Synthesis of dextran-based chain transfer agent for RAFT-mediated polymerization and glyco-nanoobjects formulation. Carbohydrate Polymers, 2020, 234, 115943.	10.2	15
21	Light-sensitive dextran-covered PNBA nanoparticles to continuously or discontinuously improve the drug release. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110393.	5.0	21
22	Effect of Tertiary Amines on the Photoinduced Electron Transfer-Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) Polymerization. Macromolecules, 2019, 52, 6898-6903.	4.8	56
23	Polymerization induced self-assembly: an opportunity toward the self-assembly of polysaccharide-containing copolymers into high-order morphologies. Polymer Chemistry, 2019, 10, 45-53.	3.9	67
24	Large and Giant Unilamellar Vesicle(s) Obtained by Self-Assembly of Poly(dimethylsiloxane)-b-poly(ethylene oxide) Diblock Copolymers, Membrane Properties and Preliminary Investigation of Their Ability to Form Hybrid Polymer/Lipid Vesicles. Polymers, 2019, 11, 2013.	4.5	27
25	Giant hybrid polymer/lipid vesicles. , 2019, , 551-568.		1
26	<i>In situ</i> glyco-nanostructure formulation <i>via</i> photo-polymerization induced self-assembly. Polymer Chemistry, 2018, 9, 2868-2872.	3.9	58
27	Asymmetric Hybrid Polymer–Lipid Giant Vesicles as Cell Membrane Mimics. Advanced Science, 2018, 5, 1700453.	11.2	45
28	Stability of a biodegradable microcarrier surface: physically adsorbed <i>versus</i> chemically linked shells. Journal of Materials Chemistry B, 2018, 6, 5130-5143.	5.8	8
29	Mixing Block Copolymers with Phospholipids at the Nanoscale: From Hybrid Polymer/Lipid Wormlike Micelles to Vesicles Presenting Lipid Nanodomains. Langmuir, 2017, 33, 1705-1715.	3.5	75
30	Modulation of phase separation at the micron scale and nanoscale in giant polymer/lipid hybrid unilamellar vesicles (GHUVs). Soft Matter, 2017, 13, 627-637.	2.7	57
31	Fast and effective quantum-dots encapsulation and protection in PEO based photo-cross-linked micelles. Journal of Colloid and Interface Science, 2016, 476, 222-229.	9.4	13
32	Polymersomes from Amphiphilic Glycopolymers Containing Polymeric Liquid Crystal Grafts. ACS Macro Letters, 2015, 4, 1119-1122.	4.8	30
33	Synthetic glycopolypeptides: synthesis and self-assembly of poly(γ-benzyl- <scp> </scp> -glutamate)-glycosylated dendron hybrids. Polymer Chemistry, 2015, 6, 7902-7912.	3.9	16
34	Controlled synthesis of new amphiphilic glycopolymers with liquid crystal grafts. Journal of Polymer Science Part A, 2013, 51, 3829-3839.	2.3	18
35	Synthesis and self-assembly of "tree-like―amphiphilic glycopolypeptides. Chemical Communications, 2012, 48, 8353.	4.1	64
36	Synthesis and self-assembly of polypeptide- and lipid-glycosylated dendron hybrids into glyconanoparticles. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0