Henrik Land

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8652301/publications.pdf Version: 2024-02-01

HENDIKLAND

#	Article	IF	CITATIONS
1	Semisynthetic [FeFe]-hydrogenase with stable expression and H2 production capacity in a photosynthetic microbe. Cell Reports Physical Science, 2021, 2, 100376.	5.6	9
2	Semi-synthetic hydrogenases—inÂvitro and inÂvivo applications. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100521.	5.9	5
3	Reversible or Irreversible Catalysis of H ⁺ /H ₂ Conversion by FeFe Hydrogenases. Journal of the American Chemical Society, 2021, 143, 20320-20325.	13.7	22
4	Engineering the Active Site of an (<i>S</i>)â€Selective Amine Transaminase for Acceptance of Doubly Bulky Primary Amines. Advanced Synthesis and Catalysis, 2020, 362, 812-821.	4.3	22
5	The maturase HydF enables [FeFe] hydrogenase assembly via transient, cofactor-dependent interactions. Journal of Biological Chemistry, 2020, 295, 11891-11901.	3.4	10
6	Characterization of a putative sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture. Chemical Science, 2020, 11, 12789-12801.	7.4	29
7	Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catalysis, 2020, 10, 7069-7086.	11.2	82
8	Carbon Dots and [FeFe] Hydrogenase Biohybrid Assemblies for Efficient Light-Driven Hydrogen Evolution. ACS Catalysis, 2020, 10, 9943-9952.	11.2	46
9	Discovery of novel [FeFe]-hydrogenases for biocatalytic H ₂ -production. Chemical Science, 2019, 10, 9941-9948.	7.4	34
10	B â€ f actor Guided Proline Substitutions in Chromobacterium violaceum Amine Transaminase: Evaluation of the Proline Rule as a Method for Enzyme Stabilization. ChemBioChem, 2019, 20, 1297-1304.	2.6	22
11	Covalently immobilized Trp60Cys mutant of ï‰-transaminase from Chromobacterium violaceum for kinetic resolution of racemic amines in batch and continuous-flow modes. Biochemical Engineering Journal, 2018, 132, 270-278.	3.6	29
12	YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations. Methods in Molecular Biology, 2018, 1685, 43-67.	0.9	306
13	One-pot biocatalytic amine transaminase/acyl transferase cascade for aqueous formation of amides from aldehydes or ketones. Catalysis Science and Technology, 2016, 6, 2897-2900.	4.1	59
14	Stabilization of an amine transaminase for biocatalysis. Journal of Molecular Catalysis B: Enzymatic, 2016, 124, 20-28.	1.8	38
15	Fluorescenceâ€Based Kinetic Assay for Highâ€Throughput Discovery and Engineering of Stereoselective ωâ€Transaminases. Advanced Synthesis and Catalysis, 2015, 357, 1721-1731.	4.3	25
16	Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnology Advances, 2015, 33, 566-604.	11.7	193
17	Connecting Unexplored Protein Crystal Structures to Enzymatic Function. ChemCatChem, 2013, 5, 150-153.	3.7	67
18	Revealing the Structural Basis of Promiscuous Amine Transaminase Activity. ChemCatChem, 2013, 5, 154-157.	3.7	80

#	Article	IF	CITATIONS
19	An efficient single-enzymatic cascade for asymmetric synthesis of chiral amines catalyzed by ï‰-transaminase. Chemical Communications, 2013, 49, 161-163.	4.1	84
20	Chromobacterium violaceum ω-transaminase variant Trp60Cys shows increased specificity for (S)-1-phenylethylamine and 4â€2-substituted acetophenones, and follows Swain–Lupton parameterisation. Organic and Biomolecular Chemistry, 2012, 10, 5466.	2.8	45

3