Simoni Margareti Plentz Meneghetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8652291/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodiesel from Castor Oil:  A Comparison of Ethanolysis versus Methanolysis. Energy & Fuels, 2006, 20, 2262-2265.	5.1	193
2	Characteristics and composition of Jatropha gossypiifoliaand Jatropha curcas L. oils and application for biodiesel production. Biomass and Bioenergy, 2009, 33, 449-453.	5.7	163
3	Transesterification reaction of vegetable oils, using superacid sulfated TiO2–base catalysts. Applied Catalysis A: General, 2008, 347, 100-105.	4.3	140
4	Oligomerization of Olefins Catalyzed by New Cationic Palladium(II) Complexes Containing an Unsymmetrical α-Diimine Ligand. Organometallics, 1999, 18, 2734-2737.	2.3	115
5	Transformação de triglicerÃdeos em combustÃveis, materiais poliméricos e insumos quÃmicos: algumas aplicações da catálise na oleoquÃmica. Quimica Nova, 2007, 30, 667-676.	0.3	107
6	Biodiesel Production from Vegetable Oil Mixtures: Cottonseed, Soybean, and Castor Oils. Energy & Fuels, 2007, 21, 3746-3747.	5.1	102
7	Studies of Terminalia catappa L. oil: Characterization and biodiesel production. Bioresource Technology, 2008, 99, 6545-6549.	9.6	83
8	Moringa oleifera oil: Studies of characterization and biodiesel production. Biomass and Bioenergy, 2010, 34, 1527-1530.	5.7	79
9	Ethanolysis of castor and cottonseed oil: A systematic study using classical catalysts. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 819-822.	1.9	78
10	Catalytic production of biodiesel and diesel-like hydrocarbons from triglycerides. Energy and Environmental Science, 2009, 2, 1258.	30.8	76
11	Biodiesel production by ethanolysis of mixed castor and soybean oils. Fuel, 2010, 89, 3791-3794.	6.4	63
12	Sn(<scp>iv</scp>)-based organometallics as catalysts for the production of fatty acid alkyl esters. Catalysis Science and Technology, 2015, 5, 765-771.	4.1	56
13	Synthesis of colloids based on gold nanoparticles dispersed in castor oil. Journal of Nanoparticle Research, 2008, 10, 201-208.	1.9	54
14	Potential application of Terminalia catappa L. and Carapa guianensis oils for biofuel production: Physical-chemical properties of neat vegetable oils, their methyl-esters and bio-oils (hydrocarbons). Industrial Crops and Products, 2014, 52, 95-98.	5.2	52
15	Methanolysis of soybean oil in the presence of tin(IV) complexes. Applied Catalysis A: General, 2007, 317, 58-61.	4.3	51
16	Characterization of Syagrus coronata (Mart.) Becc. oil and properties of methyl esters for use as biodiesel. Industrial Crops and Products, 2010, 32, 518-521.	5.2	51
17	Magnesium oxide prepared via metal–chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies. Journal of Power Sources, 2011, 196, 8057-8063.	7.8	45
18	Substitution of lead catalysts by zirconium in the oxidative polymerization of linseed oil. Progress in Organic Coatings, 1998, 33, 219-224.	3.9	36

#	Article	IF	CITATIONS
19	Homo- and Copolymerization of -Functional Polystyrene Macromonomers via Coordination Polymerization. Macromolecular Chemistry and Physics, 2002, 203, 2583-2589.	2.2	35
20	70º aniversário do biodiesel em 2007: evolução histórica e situação atual no brasil. Quimica Nova, 2007, 30, 2068-2071.	0.3	35
21	Improvements in acidity for TiO2 and SnO2 via impregnation with MoO3 for the esterification of fatty acids. Catalysis Communications, 2014, 46, 179-182.	3.3	35
22	Simultaneous conversion of triacylglycerides and fatty acids into fatty acid methyl esters using organometallic tin(IV) compounds as catalysts. Applied Catalysis A: General, 2012, 443-444, 202-206.	4.3	32
23	Physicochemical properties of Syagrus coronata and Acrocomia aculeata oils for biofuel production. Industrial Crops and Products, 2014, 62, 318-322.	5.2	32
24	Comparison of soybean oil and castor oil methanolysis in the presence of tin(IV) complexes. Fuel, 2011, 90, 2203-2206.	6.4	29
25	Neutral and Cationic Palladium(II) Complexes of a Diazapyridinophane. Structure, Fluxionality, and Reactivity toward Ethylene. Organometallics, 2001, 20, 5050-5055.	2.3	28
26	Cellulose conversion in the presence of catalysts based on Sn(<scp>iv</scp>). Catalysis Science and Technology, 2013, 3, 673-678.	4.1	28
27	Functionalizable branched poly(ethylene oxide)s grafted from poly(1,3-diisopropenylbenzene) backbones. Macromolecular Rapid Communications, 1999, 20, 122-126.	3.9	26
28	Transesterification of soybean oil in the presence of diverse alcoholysis agents and Sn(IV) organometallic complexes as catalysts, employing two different types of reactors. Applied Catalysis A: General, 2009, 365, 105-109.	4.3	25
29	Photocatalytic processes for biomass conversion. Catalysis Science and Technology, 2021, 11, 2354-2360.	4.1	24
30	Fatty acid methyl esters preparation in the presence of maltolate and n-butoxide Ti(IV) and Zr(IV) complexes. Applied Catalysis A: General, 2008, 351, 24-28.	4.3	23
31	Organotin(<scp>iv</scp>) compounds with high catalytic activities and selectivities in the glycerolysis of triacylglycerides. Catalysis Science and Technology, 2017, 7, 5750-5757.	4.1	23
32	Fructose conversion in the presence of Sn(<scp>iv</scp>) catalysts exhibiting high selectivity to lactic acid. RSC Advances, 2015, 5, 90952-90959.	3.6	22
33	Photocatalytic properties of SnO2/MoO3 mixed oxides and their relation to the electronic properties and surface acidity. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113035.	3.9	22
34	Synthesis and X-ray structure of a monoprotonated salt and of three transition-metal complexes of N,N′-ditertiobutyl-2,11-diaza[3.3](2,6)pyridinophane. Polyhedron, 2001, 20, 2705-2710.	2.2	21
35	Application of full factorial design and Doehlert matrix for the optimisation of beef tallow methanolysis via homogeneous catalysis. Fuel Processing Technology, 2011, 92, 342-348.	7.2	21
36	Characterization of biodiesel and bio-oil from Sterculia striata (chicha) oil. Industrial Crops and Products, 2012, 36, 349-354.	5.2	21

#	Article	IF	CITATIONS
37	Stirring and mixing in ethylic biodiesel production. Journal of King Saud University - Science, 2020, 32, 54-59.	3.5	21
38	Catalytic evaluation of MCM-41 hybrid silicas in the transesterification reactions. Microporous and Mesoporous Materials, 2019, 284, 265-275.	4.4	17
39	Biofuel production from Pachira aquatic Aubl and Magonia pubescens A St-Hil: Physical-chemical properties of neat vegetable oils, methyl-esters and bio-oils (hydrocarbons). Industrial Crops and Products, 2019, 127, 158-163.	5.2	17
40	Design of new styrene enriched polyethylenes via coordination copolymerization of ethylene with mono- or α,ω-difunctional polystyrene macromonomers. Polymer, 2006, 47, 1063-1072.	3.8	15
41	Synthesis and evaluation of the antibiotic and adjuvant antibiotic potential of organotin(IV) derivatives. Journal of Inorganic Biochemistry, 2018, 180, 80-88.	3.5	15
42	Polymerization of ethylene: Some aspects of metallocene catalyst stabilization under homogeneous and heterogeneous reaction conditions. Journal of Applied Polymer Science, 2011, 119, 3051-3057.	2.6	14
43	New aspects of gold nanorod formation via seed-mediated method. Comptes Rendus Chimie, 2013, 16, 640-650.	0.5	14
44	Hydrolysis of triacylglyceridesin the presence of tin(IV) catalysts. Catalysis Communications, 2016, 78, 7-10.	3.3	14
45	Preparation of ZSM-22 zeolite with hierarchical pore structure. Materials Letters, 2018, 218, 119-122.	2.6	14
46	New mechanistic approaches for fatty acid methyl ester production reactions in the presence of Sn(IV) catalysts. Catalysis Today, 2017, 289, 121-126.	4.4	12
47	Mixed oxides based on SnO2 impregnated with MoO3: A robust system to apply in fructose conversion. Catalysis Communications, 2018, 114, 120-123.	3.3	12
48	Ethylene polymerization catalyzed by a cyclophane-diimine-based Ni(II) complex, a quantum/molecular mechanic study. Journal of Molecular Catalysis A, 2012, 363-364, 1-9.	4.8	11
49	Evaluation of Proton Nuclear Magnetic Resonance Spectroscopy for Determining the Yield of Fatty Acid Ethyl Esters Obtained by Transesterification. Energy & Fuels, 2015, 29, 7343-7349.	5.1	11
50	Influence of different alkyl and carboxylate substituents on Sn(IV) organometallic catalysts during fatty acid methyl ester production. Catalysis Communications, 2015, 58, 204-208.	3.3	11
51	Catalysts based on TiO ₂ anchored with MoO ₃ or SO ₄ ^{2â^'} for conversion of cellulose into chemicals. Catalysis Science and Technology, 2016, 6, 3137-3142.	4.1	10
52	Optimization of biodiesel production via transesterification of soybean oil using $\hat{I}\pm$ -MoO3 catalyst obtained by the combustion method. Arabian Journal of Chemistry, 2022, 15, 104012.	4.9	10
53	Solution and bulk rheological behavior of poly(ethylenes) based on VERSIPOLâ"¢ catalysts. Polymer, 2005, 46, 8913-8925.	3.8	9
54	Systematic investigation of the oxidative polymerization of linseed oil catalyzed by Co(II), Mn(II), and Fe(II) complexes with chelating nitrogen ligands. European Journal of Lipid Science and Technology, 2015, 117, 229-234.	1.5	9

SIMONI MARGARETI PLENTZ

#	Article	IF	CITATIONS
55	Investigation of Sn(IV) catalysts in glycerol acetylation. Molecular Catalysis, 2020, 494, 111130.	2.0	9
56	From Disposal to Reuse: Production of Sustainable Fatty Acid Alkyl Esters Derived from Residual Oil Using a Biphasic Magnetic Catalyst. Sustainability, 2020, 12, 10159.	3.2	9
57	Surface interactions with the metal oxide surface control Ru nanoparticle formation and catalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125722.	4.7	9
58	Evaluation of Catalyst Ni _{0.4} Cu _{0.1} Zn _{0.5} Fe ₂ O _{4 } on Methyl Esterification of Free Fatty Acid Present in Cottonseed Oil. Materials Science Forum, 2012, 727-728, 1302-1307.	0.3	7
59	Study of Neat and Mixed Sn(IV) and Mo(VI) Oxides for Transesterification and Esterification: Influence of the Substrate on Leaching. Catalysis Letters, 2019, 149, 3132-3137.	2.6	7
60	Evaluation of Esterification of Oleic Acid and Glycerol in the Presence of Organotin(IV) Compounds. European Journal of Lipid Science and Technology, 2019, 121, 1900103.	1.5	7
61	Study of the morphological, structural and photophysical properties of dual emission europium-doped ZIF-8 particles. Optical Materials, 2021, 111, 110581.	3.6	7
62	O biodiesel e a polÃtica de C & T brasileira. Quimica Nova, 2006, 29, .	0.3	7
63	Comparison of the hydrothermal syntheses of Sn-magadiite using Na2SnO3 and SnCl4·5H2O as the precursors. Applied Clay Science, 2019, 183, 105293.	5.2	6
64	Transesterification, Some Applications and Biodiesel Production. Revista Virtual De Quimica, 2013, 5, .	0.4	6
65	Dilute acid pretreatment for enhancing the enzymatic saccharification of agroresidues using a <i>Botrytis ricini</i> endoglucanase. Biotechnology and Applied Biochemistry, 2023, 70, 184-192.	3.1	6
66	Highâ€ŧemperature and highâ€pressure ethylene polymerization using a cationic activated metallocene catalytic system. Polymer International, 2008, 57, 1012-1016.	3.1	5
67	Quantum mechanics/molecular mechanics investigation of the ethene polymerization mechanism catalyzed by a bulky diimine-Ni(II) complex. Journal of the Brazilian Chemical Society, 2011, 22, 428-436.	0.6	5
68	Combustion Synthesis of ZnAl ₂ O ₄ Catalyst Using Glycine as Fuel for the Esterification and Transesterification of Soybean Oil: Influence the Form of Heating. Materials Science Forum, 2012, 727-728, 1323-1328.	0.3	5
69	Colloids based on gold nanoparticles dispersed in castor oil: Synthesis parameters and the effect of the free fatty acid content. Comptes Rendus Chimie, 2015, 18, 410-421.	0.5	5
70	Characterization of antimicrobial effect of organotin-based catalysts on diesel–biodiesel deteriogenic microorganisms. Environmental Monitoring and Assessment, 2020, 192, 802.	2.7	5
71	Studies on Inter- and Transesterification: Different Oils with the Same Fatty Acid Composition and Their Reaction Behaviors. Energy & Fuels, 2020, 34, 5948-5957.	5.1	5
72	Tin, niobium and tin-niobium oxides obtained by the Pechini method using glycerol as a polyol: Synthesis, characterization and use as a catalyst in fructose conversion. Catalysis Today, 2021, 379, 62-69.	4.4	5

SIMONI MARGARETI PLENTZ

#	Article	IF	CITATIONS
73	Synthesis of <scp> MoO ₃ </scp> by pilotâ€scale combustion reaction and evaluation in biodiesel production from residual oil. International Journal of Energy Research, 2022, 46, 7775-7787.	4.5	5
74	Biomass Residues as Fuel for the Ceramic Industry in the State of Alagoas: Brazil. Waste and Biomass Valorization, 2012, 3, 191-196.	3.4	4
75	Study of correlations between composition and physicochemical properties during methylic and ethylic biodiesel synthesis. Industrial Crops and Products, 2017, 95, 18-26.	5.2	4
76	Catalytic Behaviors of Coll and MnII Compounds Bearing α-Diimine Ligands for Oxidative Polymerization or Drying Oils. Journal of the Brazilian Chemical Society, 2017, , .	0.6	4
77	Investigation of glycerol acetylation in the presence of Sb catalysts. Biomass Conversion and Biorefinery, 2023, 13, 3237-3246.	4.6	4
78	Tin, molybdenum and tin-molybdenum oxides: Influence of Lewis and Bronsted acid sites on xylose conversion. Catalysis Today, 2022, 394-396, 125-132.	4.4	4
79	Branched polyethylenes fractionated in supercritical propane. Macromolecular Research, 2010, 18, 449-457.	2.4	2
80	Determination of Alkyl Esters Content by Gas Chromatography: Validation of Method Based on Short Column and Response Factor. Journal of the Brazilian Chemical Society, 2017, , .	0.6	2
81	Different Strategies to Anchor Organotin Methoxides on Silica and Their (Re)Use as Heterogeneous Catalysts for Transesterification Reactions. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
82	Stanosilicates based on Sn-magadiites applied in conversion of fructose at moderate temperatures. Catalysis Science and Technology, 2020, 10, 6111-6115.	4.1	2
83	Property Modeling, Energy Balance and Process Simulation Applied to Bioethanol Purification. Sugar Tech, 2020, 22, 870-884.	1.8	2
84	Comparison Between Chemical and Enzymatic Hydrolysis of Lignocellulosic Biomass for Bioethanol Production: a Review. Revista Virtual De Quimica, 2021, 13, 242-259.	0.4	2
85	Progress in Development of Magadiite to Produce Multifunctional Lamellar Materials. ACS Applied Materials & Interfaces, 2022, , .	8.0	2
86	Synthesis and characterization of mesoporous materials containing cerium, lanthanum and praseodymium by nonhydrothermal method. Journal of Sol-Gel Science and Technology, 2015, 75, 413-423.	2.4	1
87	Some efforts in developing sustainable processes for integrated production of chemicals and fuels in fat and oil-based biorefineries. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100347.	5.9	1
88	Characterization of mesoporous stannosilicates obtained via non-hydrothermal synthesis using Na2SnO3 as the precursor. Microporous and Mesoporous Materials, 2021, 310, 110630.	4.4	1
89	Gold Nanorods Capped with Different Ammonium Bromide Salts on the Catalytic Chemical Reduction of p-Nitrophenol. Journal of the Brazilian Chemical Society, 0, , .	0.6	1
90	IMPROVEMENT OF AN ANALYTICAL METHOD BASED ON HPLC WITH REFRACTIVE INDEX DETECTION FOR THE ANALYSIS OF GLYCEROL OXIDATION PRODUCTS. Quimica Nova, 2019, , .	0.3	1

#	Article	IF	CITATIONS
91	Alternative distillation configurations for bioethanol purification: Simulation, optimization and techno-economic assessment. Chemical Engineering Research and Design, 2022, 185, 130-145.	5.6	1
92	Characterization and Efficiency of ZnAl ₂ O ₄ Spinel Synthesized by Combustion Reaction on the Esterification and Transesterification of Soybean Oil. Materials Science Forum, 2012, 727-728, 1919-1924.	0.3	0
93	Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1â^'x MnxO in cellulose conversion. Chemical Papers, 2014, 68, .	2.2	0
94	Synthesis of Magnetic Nanoparticles Ni _{0.} ₅ Zn ₀ <sub>_{ } and Ni₀_.₂Cu₀<sub> </sub> </sub> for Biodiesel Obtai. Materials Science Forum, 0, 820, 119-124.	0.3	0
95	Physicochemical Quality and Bioactive Compounds of the Honey of Melipona scutellaris Produced in an Urban-Industrial Region. Revista Virtual De Quimica, 2021, 13, 1268-1277.	0.4	0
96	Aplicação de óxidos de metais como catalisadores heterogêneos na isomerização da glicose em meio aquoso. Diversitas Journal, 2021, 6, 801-822.	0.1	0
97	Main Technologies for the Production of Anhydrous Ethanol in Brazil. Revista Virtual De Quimica, 2021, 13, 1228-1240.	0.4	0
98	Polymeric Materials Synthesis by Oxidative Polymerization of Triacylglycerides and Derivatives. Revista Virtual De Quimica, 2013, 5, .	0.4	0
99	Edição Especial Dedicada ao Grupo de Pesquisas Rede de Estudos em OleoquÃmica. Revista Virtual De Quimica, 2013, 5, .	0.4	0
100	Mesoporous Staniosilicate Catalysts: A Brief Review. Revista Virtual De Quimica, 0, , .	0.4	0
101	Contributions of Catalysis in the Search for Sustainability. Revista Virtual De Quimica, 0, , .	0.4	0
102	Interaction of Lead and Calcium with Biochar Produced from Cassava Waste: Perspectives for Agricultural and Environmental Application. Journal of the Brazilian Chemical Society, 0, , .	0.6	0