Zhendong Leng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/865227/publications.pdf

Version: 2024-02-01

1307594 1058476 15 206 14 7 citations g-index h-index papers 15 15 15 220 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Prediction of frequency-dependent attenuation of blast-induced vibration in underground excavation. European Journal of Environmental and Civil Engineering, 2021, 25, 2181-2198.	2.1	9
2	Mechanism of the in-hole detonation wave interactions in dual initiation with electronic detonators in bench blasting operation. Computers and Geotechnics, 2021, 129, 103873.	4.7	11
3	Damage zones induced by in situ stress unloading during excavation of diversion tunnels for the Jinping II hydropower project. Bulletin of Engineering Geology and the Environment, 2021, 80, 4689-4715.	3.5	22
4	Rockburst Prediction From the Perspective of Energy Release: A Case Study of a Diversion Tunnel at Jinping II Hydropower Station. Frontiers in Earth Science, 2021, 9, .	1.8	6
5	Mathematical and Mechanical Analysis of the Effect of Detonator Location and Its Improvement in Bench Blasting. Mathematical Problems in Engineering, 2020, 2020, 1-14.	1.1	2
6	Development of a Model to Predict Vibrations Induced by Blasting Excavation of Deep Rock Masses under High In Situ Stress. Shock and Vibration, 2020, 2020, 1-14.	0.6	2
7	Safety threshold of blasting vibration velocity in foundation excavation of Baihetan super-high arch dam. Bulletin of Engineering Geology and the Environment, 2020, 79, 4999-5012.	3.5	6
8	Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine. International Journal of Mining Science and Technology, 2020, 30, 373-380.	10.3	40
9	Effect of Initiation Location within Blasthole on Blast Vibration Field and Its Mechanism. Shock and Vibration, 2019, 2019, 1-18.	0.6	6
10	Experimental and numerical investigation of the effect of blast-generated free surfaces on blasting vibration. European Journal of Environmental and Civil Engineering, 2018, 22, 1374-1398.	2.1	28
11	Rock mass utilization for the foundation surfaces of high arch dams in medium or high geo-stress regions: a review. Bulletin of Engineering Geology and the Environment, 2017, 76, 795-813.	3.5	9
12	The influence of flowing water coupling condition on the result of rock mass acoustic test. Bulletin of Engineering Geology and the Environment, 2017, 76, 1449-1459.	3.5	2
13	Influence of tunneling methods on the strainburst characteristics during the excavation of deep rock masses. Engineering Geology, 2016, 201, 85-95.	6.3	53
14	Real-Time Assessment of Blasting Damage Depth Based on the Induced Vibration During Excavation of a High Rock Slope. Geotechnical Testing Journal, 2016, 39, 991-1005.	1.0	3
15	Effect of the Location of the Detonation Initiation Point for Bench Blasting. Shock and Vibration, 2015, 2015, 1-11.	0.6	7