Alexis De Angeli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8651949/publications.pdf Version: 2024-02-01

ALEVIS DE ANCELL

#	Article	IF	CITATIONS
1	Heterologous expression reveals that GABA does not directly inhibit the vacuolar anion channel <i>At</i> ALMT9. Plant Physiology, 2022, 189, 469-472.	4.8	3
2	Connecting vacuolar and plasma membrane transport networks. New Phytologist, 2021, 229, 755-762.	7.3	10
3	The Arabidopsis protein NPF6.2/NRT1.4 is a plasma membrane nitrate transporter and a target of protein kinase CIPK23. Plant Physiology and Biochemistry, 2021, 168, 239-251.	5.8	13
4	Novel Electrical Signaling: First Fast Voltage-Gated Sodium Channel Identified Outside of the Animal Kingdom. Plant Physiology, 2020, 184, 1618-1619.	4.8	1
5	Dynamic measurement of cytosolic pH and [NO ₃ ^{â^²}] uncovers the role of the vacuolar transporter AtCLCa in cytosolic pH homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15343-15353.	7.1	29
6	Ion Transport at the Vacuole during Stomatal Movements. Plant Physiology, 2017, 174, 520-530.	4.8	63
7	ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis. Plant Cell, 2017, 29, 2552-2569.	6.6	80
8	Vacuolar Chloride Fluxes Impact Ion content and Distribution during Early Salinity Stress. Plant Physiology, 2016, 172, pp.00183.2016.	4.8	45
9	Anion Channel Blockage by ATP as a Means for Membranes to Perceive the Energy Status of theÂCell. Molecular Plant, 2016, 9, 320-322.	8.3	10
10	Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid. Science Signaling, 2014, 7, ra65.	3.6	74
11	Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9. Journal of Biological Chemistry, 2014, 289, 25581-25589.	3.4	20
12	AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nature Communications, 2013, 4, 1804.	12.8	196
13	The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. Planta, 2013, 238, 283-291.	3.2	69
14	Identification of a Probable Pore-Forming Domain in the Multimeric Vacuolar Anion Channel AtALMT9 Â Â. Plant Physiology, 2013, 163, 830-843.	4.8	31
15	Vacuolar Transporters in Their Physiological Context. Annual Review of Plant Biology, 2012, 63, 183-213.	18.7	210
16	Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant Journal, 2011, 67, 247-257.	5.7	143
17	The proline 160 in the selectivity filter of the Arabidopsis NO3â^'/H+ exchanger AtCLCa is essential for nitrate accumulation in planta. Plant Journal, 2010, 63, 861-869.	5.7	76
18	ATP Binding to the C Terminus of the Arabidopsis thaliana Nitrate/Proton Antiporter, AtCLCa, Regulates Nitrate Transport into Plant Vacuoles. Journal of Biological Chemistry, 2009, 284, 26526-26532.	3.4	74