
Teresa Lana-Villarreal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8651913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoelectrocatalytic production of solar fuels with semiconductor oxides: materials, activity and modeling. Chemical Communications, 2020, 56, 12272-12289.	4.1	24
2	Tuning the oxygen evolution reaction activity of Ni- and Co-modified Fe(OH)2 electrodes through structure and composition control. International Journal of Hydrogen Energy, 2020, 45, 17076-17087.	7.1	11
3	Electrochemical Doping as a Way to Enhance Water Photooxidation on Nanostructured Nickel Titanate and Anatase Electrodes. ChemElectroChem, 2017, 4, 1429-1435.	3.4	4
4	New insights into water photooxidation on reductively pretreated hematite photoanodes. Physical Chemistry Chemical Physics, 2017, 19, 21807-21817.	2.8	10
5	Study of Copper Ferrite as a Novel Photocathode for Water Reduction: Improving Its Photoactivity by Electrochemical Pretreatment. ChemSusChem, 2016, 9, 1504-1512.	6.8	42
6	Improving the photoactivity of bismuth vanadate thin film photoanodes through doping and surface modification strategies. Applied Catalysis B: Environmental, 2016, 194, 141-149.	20.2	45
7	A comparative photophysical and photoelectrochemical study of undoped and 2-aminothiophene-3-carbonitrile-doped carbon nitride. Electrochimica Acta, 2016, 219, 453-462.	5.2	5
8	SnO2-decorated multiwalled carbon nanotubes and Vulcan carbon through a sonochemical approach for supercapacitor applications. Ultrasonics Sonochemistry, 2016, 29, 205-212.	8.2	39
9	Ultrasound-assisted selective hydrogenation of C-5 acetylene alcohols with Lindlar catalysts. Ultrasonics Sonochemistry, 2015, 26, 445-451.	8.2	18
10	Sonochemical Synthesis of Mesoporous NiTiO ₃ Ilmenite Nanorods for the Catalytic Degradation of Tergitol in Water. Industrial & Engineering Chemistry Research, 2015, 54, 2983-2990.	3.7	44
11	Sol–gel copper chromium delafossite thin films as stable oxide photocathodes for water splitting. Journal of Materials Chemistry A, 2015, 3, 19683-19687.	10.3	36
12	Photogeneration of Hydrogen from Water by Hybrid Molybdenum Sulfide Clusters Immobilized on Titania. ChemSusChem, 2015, 8, 148-157.	6.8	44
13	Synthesis of TiO2/WO3 nanoparticles via sonochemical approach for the photocatalytic degradation of methylene blue under visible light illumination. Ultrasonics Sonochemistry, 2014, 21, 1964-1968.	8.2	53
14	Recent Progress in Colloidal Quantum Dot-Sensitized Solar Cells. Lecture Notes in Nanoscale Science and Technology, 2014, , 1-38.	0.8	1
15	Potentiostatic Reversible Photoelectrochromism: An Effect Appearing in Nanoporous TiO ₂ /Ni(OH) ₂ Thin Films. ACS Applied Materials & Interfaces, 2014, 6, 10304-10312.	8.0	12
16	Interplay Between Structure, Stoichiometry, and Electron Transfer Dynamics in SILAR-based Quantum Dot-Sensitized Oxides. Nano Letters, 2014, 14, 5780-5786.	9.1	26
17	Modification of Hematite Electronic Properties with Trimethyl Aluminum to Enhance the Efficiency of Photoelectrodes. Journal of Physical Chemistry Letters, 2014, 5, 3582-3587.	4.6	21
18	Quantum dot-sensitized solar cells based on directly adsorbed zinc copper indium sulfide colloids. Physical Chemistry Chemical Physics, 2014, 16, 9115-9122.	2.8	20

#	Article	IF	CITATIONS
19	Catalytic degradation of a plasticizer, di-ethylhexyl phthalate, using Nx–TiO2â^'x nanoparticles synthesized via co-precipitation. Chemical Engineering Journal, 2013, 231, 182-189.	12.7	26
20	Preparation and Characterization of Nickel Oxide Photocathodes Sensitized with Colloidal Cadmium Selenide Quantum Dots. Journal of Physical Chemistry C, 2013, 117, 22509-22517.	3.1	38
21	Oxygen evolution at ultrathin nanostructured Ni(OH)2 layers deposited on conducting glass. International Journal of Hydrogen Energy, 2013, 38, 2746-2753.	7.1	48
22	Improving the Photoelectrochemical Response of TiO ₂ Nanotubes upon Decoration with Quantum-Sized Anatase Nanowires. Journal of Physical Chemistry C, 2013, 117, 4024-4031.	3.1	18
23	Sensitization of TiO2 with PbSe Quantum Dots by SILAR: How Mercaptophenol Improves Charge Separation. Journal of Physical Chemistry Letters, 2012, 3, 3367-3372.	4.6	62
24	Modulating the n- and p-type photoelectrochemical behavior of zinc copper indium sulfide quantum dots by an electrochemical treatment. Chemical Communications, 2012, 48, 7681.	4.1	13
25	Electron Lifetime in Quantumâ€Đot‧ensitized Photoanodes by Openâ€Circuitâ€Potential Measurements. ChemPhysChem, 2012, 13, 3589-3594.	2.1	4
26	A solid-state CdSe quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material. Physical Chemistry Chemical Physics, 2012, 14, 5801.	2.8	37
27	Toward Antimony Selenide Sensitized Solar Cells: Efficient Charge Photogeneration at <i>spiro</i> -OMeTAD/Sb ₂ Se ₃ /Metal Oxide Heterojunctions. Journal of Physical Chemistry Letters, 2012, 3, 1351-1356.	4.6	85
28	The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. ChemPhysChem, 2012, 13, 2824-2875.	2.1	239
29	Trap States in TiO ₂ Films Made of Nanowires, Nanotubes or Nanoparticles: An Electrochemical Study. ChemPhysChem, 2012, 13, 3008-3017.	2.1	73
30	A comparison of quantum-sized anatase and rutile nanowire thin films: Devising differences in the electronic structure from photoelectrochemical measurements. Electrochimica Acta, 2012, 62, 172-180.	5.2	51
31	Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 12024.	2.8	217
32	Effect of Surface Fluorination on the Electrochemical and Photoelectrocatalytic Properties of Nanoporous Titanium Dioxide Electrodes. Langmuir, 2011, 27, 15312-15321.	3.5	55
33	Solid-state electropolymerization and doping of triphenylamine as a route for electroactive thin films. Physical Chemistry Chemical Physics, 2011, 13, 4013.	2.8	22
34	Characterization and Polymerization of Thienylphenyl and Selenylphenyl Amines and Their Interaction with CdSe Quantum Dots. ChemPhysChem, 2011, 12, 1155-1164.	2.1	2
35	Efficient sensitization of ZnO nanoporous films with CdSe QDs grown by Successive lonic Layer Adsorption and Reaction (SILAR). Journal of Photochemistry and Photobiology A: Chemistry, 2011, 220, 47-53.	3.9	42
36	Energy transfer versus charge separation in hybrid systems of semiconductor quantum dots and Ru-dyes as potential co-sensitizers of TiO2-based solar cells. Journal of Applied Physics, 2011, 110, .	2.5	42

#	Article	IF	CITATIONS
37	Direct Correlation between Ultrafast Injection and Photoanode Performance in Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 22352-22360.	3.1	97
38	Hierarchically organized titanium dioxide nanostructured electrodes: Quantum-sized nanowires grown on nanotubes. Electrochemistry Communications, 2010, 12, 1356-1359.	4.7	7
39	Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: Correlation between cell performance and structural properties. Journal of Applied Physics, 2010, 108, 064310.	2.5	42
40	Sensitization of Titanium Dioxide Photoanodes with Cadmium Selenide Quantum Dots Prepared by SILAR: Photoelectrochemical and Carrier Dynamics Studies. Journal of Physical Chemistry C, 2010, 114, 21928-21937.	3.1	120
41	Photoelectrochemical behaviour of anatase nanoporous films: effect of the nanoparticle organization. Nanoscale, 2010, 2, 1690.	5.6	27
42	Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology, 2009, 20, 20, 295204.	2.6	383
43	Sonopotential: a new concept in electrochemistry. Chemical Communications, 2009, , 4127.	4.1	9
44	CdSe Quantum Dot-Sensitized TiO ₂ Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment. Journal of Physical Chemistry C, 2009, 113, 4208-4214.	3.1	328
45	Thin Films of Rutile Quantum-size Nanowires as Electrodes: Photoelectrochemical Studies. Journal of Physical Chemistry C, 2008, 112, 15920-15928.	3.1	36
46	Formate Adsorption onto Thin Films of Rutile TiO ₂ Nanorods and Nanowires. Langmuir, 2008, 24, 14035-14041.	3.5	13
47	An Electrochemical Study on the Nature of Trap States in Nanocrystalline Rutile Thin Films. Journal of Physical Chemistry C, 2007, 111, 9936-9942.	3.1	117
48	Nanostructured Zinc Stannate as Semiconductor Working Electrodes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 5549-5556.	3.1	143
49	The electrochemistry of transparent quantum size rutile nanowire thin films prepared by one-step low temperature chemical bath deposition. Chemical Physics Letters, 2007, 447, 91-95.	2.6	22
50	Photocatalytic behavior of suspended and supported semiconductor particles in aqueous media: Fundamental aspects using catechol as model molecule. Catalysis Today, 2007, 129, 86-95.	4.4	19
51	Charge transfer reductive doping of nanostructured TiO2 thin films as a way to improve their photoelectrocatalytic performance. Electrochemistry Communications, 2006, 8, 1713-1718.	4.7	89
52	Determination of electron diffusion lengths in nanostructured oxide electrodes from photopotential maps obtained with the scanning microscope for semiconductor characterization. Electrochemistry Communications, 2006, 8, 1784-1790.	4.7	19
53	Adsorption studies on titanium dioxide by means of Raman spectroscopy. Comptes Rendus Chimie, 2006, 9, 806-816.	0.5	19
54	Tuning the photoelectrochemistry of nanoporous anatase electrodes by modification with gold nanoparticles: Development of cathodic photocurrents. Chemical Physics Letters, 2005, 414, 489-494.	2.6	26

#	Article	IF	CITATIONS
55	Interfacial electron transfer at TiO2 nanostructured electrodes modified with capped gold nanoparticles: The photoelectrochemistry of water oxidation. Electrochemistry Communications, 2005, 7, 1218-1224.	4.7	32
56	A Spectroscopic and Electrochemical Approach to the Study of the Interactions and Photoinduced Electron Transfer between Catechol and Anatase Nanoparticles in Aqueous Solution. Journal of the American Chemical Society, 2005, 127, 12601-12611.	13.7	160
57	Surface enhanced Raman spectroscopy for adsorption studies on semiconductor nanostructured films. Surface Science, 2004, 572, 329-336.	1.9	11
58	Semiconductor Photooxidation of Pollutants Dissolved in Water:  A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer. I. Photoelectrochemical Experiments with Polycrystalline Anatase Electrodes under Current Doubling and Absence of Recombination. Journal of Physical Chemistry B, 2004, 108, 15172-15181.	2.6	154