Jerome Rose

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8651468/jerome-rose-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 204
papers
 11,644
citations
 54
h-index
 102
g-index

 217
ext. papers
 12,688
ext. citations
 6.7
avg, IF
 6
L-index

#	Paper	IF	Citations
204	Potential of Ligand-Promoted Dissolution at Mild pH for the Selective Recovery of Rare Earth Elements in Bauxite Residues. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 6942-6951	8.3	O
203	Aquatic Mesocosm Strategies for the Environmental Fate and Risk Assessment of Engineered Nanomaterials. <i>Environmental Science & Environmental Science</i>	10.3	1
202	In situ determination of engineered nanomaterial aggregation state in a cosmetic emulsion I toward safer-by-design products. <i>Environmental Science: Nano</i> , 2021 , 8, 3546-3559	7.1	1
201	The SERENADE project; a step forward in the safe by design process of nanomaterials: The benefits of a diverse and interdisciplinary approach. <i>Nano Today</i> , 2021 , 37, 101065	17.9	4
200	Robustness of Indoor Aquatic Mesocosm Experimentations and Data Reusability to Assess the Environmental Risks of Nanomaterials. <i>Frontiers in Environmental Science</i> , 2021 , 9,	4.8	1
199	X-ray absorption spectroscopy evidence of sulfur-bound cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena. <i>Environmental Pollution</i> , 2021 , 279, 116	i893	0
198	MESOCOSM: A mesocosm database management system for environmental nanosafety <i>NanoImpact</i> , 2021 , 21, 100288	5.6	2
197	In Vitro Co-Exposure to CeO Nanomaterials from Diesel Engine Exhaust and Benzo()Pyrene Induces Additive DNA Damage in Sperm and Cumulus Cells but Not in Oocytes. <i>Nanomaterials</i> , 2021 , 11,	5.4	3
196	The SERENADE project 🖪 step forward in the Safe by Design process of nanomaterials: Moving towards a product-oriented approach. <i>Nano Today</i> , 2021 , 39, 101238	17.9	1
195	Anthropogenic Release and Distribution of Titanium Dioxide Particles in a River Downstream of a Nanomaterial Manufacturer Industrial Site. <i>Frontiers in Environmental Science</i> , 2020 , 8,	4.8	14
194	Multivariate analysis of the exposure and hazard of ceria nanomaterials in indoor aquatic mesocosms. <i>Environmental Science: Nano</i> , 2020 , 7, 1661-1669	7.1	3
193	Colonisation of finfish substrate inhabited by black soldier fly larvae by blow flies, bacteria, and fungi. <i>Journal of Insects As Food and Feed</i> , 2020 , 6, 291-304	4.4	4
192	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. <i>Environmental Science: Nano</i> , 2020 , 7, 13-36	7.1	23
191	The necessity of investigating a freshwater-marine continuum using a mesocosm approach in nanosafety: The case study of TiO2 MNM-based photocatalytic cement. <i>NanoImpact</i> , 2020 , 20, 100254	5.6	3
190	Safe(r) by design implementation in the nanotechnology industry. <i>NanoImpact</i> , 2020 , 20, 100267	5.6	16
189	CeO Nanomaterials from Diesel Engine Exhaust Induce DNA Damage and Oxidative Stress in Human and Rat Sperm In Vitro. <i>Nanomaterials</i> , 2020 , 10,	5.4	4
188	Ontology-based NLP information extraction to enrich nanomaterial environmental exposure database. <i>Procedia Computer Science</i> , 2020 , 176, 360-369	1.6	3

(2018-2020)

187	The shape and speciation of Ag nanoparticles drive their impacts on organisms in a lotic ecosystem. <i>Environmental Science: Nano</i> , 2020 , 7, 3167-3177	7.1	6
186	Oxidative transformation of Tungsten (W) nanoparticles potentially released in aqueous and biological media in case of Tokamak (nuclear fusion) Lost of Vacuum Accident (LOVA). <i>Comptes Rendus - Geoscience</i> , 2020 , 352, 539-558	1.4	1
185	Monitoring the Environmental Aging of Nanomaterials: An Opportunity for Mesocosm Testing?. <i>Materials</i> , 2019 , 12,	3.5	7
184	In Vitro Analysis of the Effects of ITER-Like Tungsten Nanoparticles: Cytotoxicity and Epigenotoxicity in BEAS-2B Cells. <i>Nanomaterials</i> , 2019 , 9,	5.4	5
183	Mechanisms limiting the release of TiO2 nanomaterials during photocatalytic cement alteration: the role of surface charge and porous network morphology. <i>Environmental Science: Nano</i> , 2019 , 6, 624-6	5 3 4 ¹	3
182	Calcium coordination environment in precursor species to calcium carbonate mineral formation. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 259, 344-357	5.5	7
181	Design of model tokamak particles for future toxicity studies: Morphology and physical characterization. <i>Fusion Engineering and Design</i> , 2019 , 145, 60-65	1.7	3
180	Soil organo-mineral associations formed by co-precipitation of Fe, Si and Al in presence of organic ligands. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 260, 15-28	5.5	29
179	Contribution of mesocosm testing to a single-step and exposure-driven environmental risk assessment of engineered nanomaterials. <i>NanoImpact</i> , 2019 , 13, 66-69	5.6	20
178	Elaboration of Cellulose Nanocrystal/Ge-Imogolite Nanotube Multilayered Thin Films. <i>Langmuir</i> , 2018 , 34, 3386-3394	4	13
177	The effect of surface modification of microfibrillated cellulose (MFC) by acid chlorides on the structural and thermomechanical properties of biopolyamide 4.10 nanocomposites. <i>Industrial Crops and Products</i> , 2018 , 116, 97-108	5.9	18
176	Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products. <i>Geochimica Et Cosmochimica Acta</i> , 2018 , 229, 53-64	5.5	10
175	Very low concentration of cerium dioxide nanoparticles induce DNA damage, but no loss of vitality, in human spermatozoa. <i>Toxicology in Vitro</i> , 2018 , 50, 236-241	3.6	21
174	Transformations of Nanoenabled Copper Formulations Govern Release, Antifungal Effectiveness, and Sustainability throughout the Wood Protection Lifecycle. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 1128-1138	10.3	22
173	Respiratory hazard of Li-ion battery components: elective toxicity of lithium cobalt oxide (LiCoO) particles in a mouse bioassay. <i>Archives of Toxicology</i> , 2018 , 92, 1673-1684	5.8	11
172	Multi-scale X-ray computed tomography to detect and localize metal-based nanomaterials in lung tissues of in vivo exposed mice. <i>Scientific Reports</i> , 2018 , 8, 4408	4.9	11
171	Environmental exposure of a simulated pond ecosystem to a CuO nanoparticle-based wood stain throughout its life cycle. <i>Environmental Science: Nano</i> , 2018 , 5, 2579-2589	7.1	14
170	Drastic Change in Zinc Speciation during Anaerobic Digestion and Composting: Instability of Nanosized Zinc Sulfide. <i>Environmental Science & Environmental Environme</i>	10.3	19

169	Non-linear release dynamics for a CeO nanomaterial embedded in a protective wood stain, due to matrix photo-degradation. <i>Environmental Pollution</i> , 2018 , 241, 182-193	9.3	12
168	SERENADE: safer and ecodesign research and education applied to nanomaterial development, the new generation of materials safer by design. <i>Environmental Science: Nano</i> , 2017 , 4, 526-538	7.1	19
167	Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 9269-9277	5.1	20
166	Alignment of Ge-imogolite nanotubes in isomalt with tunable inter-tube distances. <i>RSC Advances</i> , 2017 , 7, 21323-21327	3.7	5
165	Pulmonary exposure to metallic nanomaterials during pregnancy irreversibly impairs lung development of the offspring. <i>Nanotoxicology</i> , 2017 , 11, 484-495	5.3	29
164	Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching. <i>Environmental Science & Environmental Science & Environm</i>	10.3	25
163	3D Characterization of Silicon Based Electrode Material for Advanced Lithium-Ion Storage Technologies. <i>Microscopy and Microanalysis</i> , 2017 , 23, 2026-2027	0.5	1
162	High-Energy Resolution Fluorescence Detected X-Ray Absorption Spectroscopy: A Powerful New Structural Tool in Environmental Biogeochemistry Sciences. <i>Journal of Environmental Quality</i> , 2017 , 46, 1146-1157	3.4	35
161	Structural and physical Themical behavior of a CeO2 nanoparticle based diesel additive during combustion and environmental release. <i>Environmental Science: Nano</i> , 2017 , 4, 1974-1980	7.1	12
160	Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials. <i>NanoImpact</i> , 2017 , 8, 1-10	5.6	47
159	Nanoparticle Uptake in Plants: Gold Nanomaterial Localized in Roots of Arabidopsis thaliana by X-ray Computed Nanotomography and Hyperspectral Imaging. <i>Environmental Science & Environmental Science</i>	10.3	92
158	Environmental exposure to TiO nanomaterials incorporated in building material. <i>Environmental Pollution</i> , 2017 , 220, 1160-1170	9.3	36
157	3D Microanalysis of Porous Copper Using FIB-Tomography in Combination with X-ray Computed Tomography. <i>Microscopy and Microanalysis</i> , 2017 , 23, 254-255	0.5	2
156	Remote Biodegradation of Ge-Imogolite Nanotubes Controlled by the Iron Homeostasis of Pseudomonas brassicacearum. <i>Environmental Science & Environmental Science & Environment</i>	10.3	7
155	Influence of structural defects of Ge-imogolite nanotubes on their toxicity towards Pseudomonas brassicacearum. <i>Environmental Science: Nano</i> , 2016 , 3, 839-846	7.1	7
154	Design Defines the Effects of Nanoceria at a Low Dose on Soil Microbiota and the Potentiation of Impacts by the Canola Plant. <i>Environmental Science & Environmental Science &</i>	10.3	18
153	Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier. <i>Environmental Science & Environmental Science & Environ</i>	10.3	43
152	Arsenate uptake by Al nanoclusters and other Al-based sorbents during water treatment. <i>Water Research</i> , 2016 , 88, 844-851	12.5	25

(2014-2016)

151	Meeting the Needs for Released Nanomaterials Required for Further Testing-The SUN Approach. <i>Environmental Science & Environmental Science & Environme</i>	10.3	49
150	Size fractionation of elements and nanoparticles in natural water by both dead-end and tangential flow filtration. <i>Desalination and Water Treatment</i> , 2016 , 57, 8194-8203		
149	Isotopically exchangeable Al in coastal lowland acid sulfate soils. <i>Science of the Total Environment</i> , 2016 , 542, 129-35	10.2	1
148	Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 5960-8	5.1	20
147	Cerium dioxide nanoparticles affect in vitro fertilization in mice. <i>Nanotoxicology</i> , 2016 , 10, 111-7	5.3	37
146	Accelerated microwave assisted synthesis of alumino-germanate imogolite nanotubes. <i>RSC Advances</i> , 2016 , 6, 108146-108150	3.7	9
145	Aggregation and sedimentation of magnetite nanoparticle clusters. <i>Environmental Science: Nano</i> , 2016 , 3, 567-577	7.1	62
144	Are interactions between organic compounds and nanoscale weathering minerals the key drivers of carbon storage in soils?. <i>Environmental Science & Environmental Science & Env</i>	10.3	39
143	Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. <i>Comptes Rendus - Geoscience</i> , 2015 , 347, 35-42	1.4	18
142	Chronic dosing of a simulated pond ecosystem in indoor aquatic mesocosms: fate and transport of CeO2 nanoparticles. <i>Environmental Science: Nano</i> , 2015 , 2, 653-663	7.1	38
141	DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: Evidence of a clastogenic effect as a mechanism of genotoxicity. <i>Nanotoxicology</i> , 2015 , 9, 696-705	5.3	44
140	Synergistic effects of sulfate reducing bacteria and zero valent iron on zinc removal and stability in aquifer sediment. <i>Chemical Engineering Journal</i> , 2015 , 260, 83-89	14.7	50
139	Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste. <i>Cement and Concrete Research</i> , 2015 , 67, 138-147	10.3	153
138	Application of membrane processes in fractionation of elements in river water. <i>Water Science and Technology</i> , 2015 , 72, 2277-90	2.2	1
137	Surface Properties (Physical and Chemical) and Related Reactions: Characterization via a Multi-Technique Approach. <i>Frontiers of Nanoscience</i> , 2015 , 8, 217-243	0.7	2
136	Long-term aging of a CeO(2) based nanocomposite used for wood protection. <i>Environmental Pollution</i> , 2014 , 188, 1-7	9.3	51
135	Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. <i>Water Research</i> , 2014 , 51, 64-72	12.5	83
134	Structural incorporation of iron into Gellmogolite nanotubes: a promising step for innovative nanomaterials. <i>RSC Advances</i> , 2014 , 4, 49827-49830	3.7	33

133	Aged TiO2-based nanocomposite used in sunscreens produces singlet oxygen under long-wave UV and sensitizes Escherichia coli to cadmium. <i>Environmental Science & Escherichia Coli to Cadmium</i> . <i>Environmental Science & Camp; Technology</i> , 2014 , 48, 5245-53	10.3	35
132	Transfer, transformation, and impacts of ceria nanomaterials in aquatic mesocosms simulating a pond ecosystem. <i>Environmental Science & Environmental </i>	10.3	78
131	Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (Fundulus heteroclitus) embryos. <i>Nanotoxicology</i> , 2014 , 8 Suppl 1, 167-76	5.3	24
130	Toxicity evaluation of manufactured CeO2 nanoparticles before and after alteration: combined physicochemical and whole-genome expression analysis in Caco-2 cells. <i>BMC Genomics</i> , 2014 , 15, 700	4.5	31
129	An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems. <i>Scientific Reports</i> , 2014 , 4, 5608	4.9	34
128	Nanometer-long Ge-imogolite nanotubes cause sustained lung inflammation and fibrosis in rats. <i>Particle and Fibre Toxicology</i> , 2014 , 11, 67	8.4	21
127	Molecular insights of oxidation process of iron nanoparticles: spectroscopic, magnetic, and microscopic evidence. <i>Environmental Science & Environmental Science & Environment</i>	10.3	73
126	Exposure of juvenile Danio rerio to aged TiOlhanomaterial from sunscreen. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 3340-50	5.1	33
125	An overview of solid/liquid separation methods and size fractionation techniques for engineered nanomaterials in aquatic environment. <i>Environmental Technology Reviews</i> , 2013 , 2, 55-70	7.7	15
124	Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex. <i>Water Research</i> , 2013 , 47, 3921-30	12.5	32
123	Single-step formation of micron long (OH)3Al2O3Ge(OH) imogolite-like nanotubes. <i>Chemical Communications</i> , 2013 , 49, 11284-6	5.8	50
122	Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona?. <i>Nanoscale</i> , 2013 , 5, 1658-68	7.7	110
121	Sulfur and oxygen isotope tracing in zero valent iron based In situ remediation system for metal contaminants. <i>Chemosphere</i> , 2013 , 90, 1366-71	8.4	17
120	Preparation of amino-functionalized silica in aqueous conditions. <i>Applied Surface Science</i> , 2013 , 266, 15.	5 <i>6</i> 1\$0	29
119	Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation. <i>Environmental Science & Environmental Science </i>	10.3	136
118	Ultrastructural interactions and genotoxicity assay of cerium dioxide nanoparticles on mouse oocytes. <i>International Journal of Molecular Sciences</i> , 2013 , 14, 21613-28	6.3	46
117	Arsenic binding to organic and inorganic sulfur species during microbial sulfate reduction: a sediment flow-through reactor experiment. <i>Environmental Chemistry</i> , 2013 , 10, 285	3.2	35
116	Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species. <i>PLoS ONE</i> , 2013 , 8, e71260	3.7	59

115	Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route. <i>Environmental Pollution</i> , 2012 , 163, 55-61	9.3	46
114	Potential scenarios for nanomaterial release and subsequent alteration in the environment. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 50-9	3.8	457
113	Influence of the length of imogolite-like nanotubes on their cytotoxicity and genotoxicity toward human dermal cells. <i>Chemical Research in Toxicology</i> , 2012 , 25, 2513-22	4	21
112	Physico-chemical control over the single- or double-wall structure of aluminogermanate imogolite-like nanotubes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3780-6	16.4	65
111	Is there a Trojan-horse effect during magnetic nanoparticles and metalloid cocontamination of human dermal fibroblasts?. <i>Environmental Science & Environmental Science & Envi</i>	10.3	13
110	Chemical element imaging for speleothem geochemistry: Application to a uranium-bearing corallite with aragonite diagenesis to opal (Eastern Siberia, Russia). <i>Chemical Geology</i> , 2012 , 294-295, 190-202	4.2	13
109	Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. <i>Geoderma</i> , 2012 , 183-184, 100-108	6.7	65
108	Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in caco-2 cells. <i>Particle and Fibre Toxicology</i> , 2012 , 9, 18	8.4	63
107	Location and evolution of the speciation of vanadium in bitumen and model of reclaimed bituminous mixes during ageing: Can vanadium serve as a tracer of the aged and fresh parts of the reclaimed asphalt pavement mixture?. <i>Fuel</i> , 2012 , 102, 423-430	7.1	18
106	Arsenic speciation in cemented paste backfills and synthetic calcium lilicate lydrates. <i>Minerals Engineering</i> , 2012 , 39, 51-61	4.9	19
105	Adsorption of arsenic on polyaluminum granulate. <i>Environmental Science & Environmental Science & Envi</i>	10.3	38
104	Reply to comment on Fisichella et al. (2012), "Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in Caco-2 cells" by Faust et al. <i>Particle and Fibre Toxicology</i> , 2012 , 9, 39	8.4	6
103	Life cycle assessment of the application of nanoclays in wire coating. <i>IOP Conference Series:</i> Materials Science and Engineering, 2012 , 40, 012014	0.4	
102	High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline. <i>Review of Scientific Instruments</i> , 2012 , 83, 063104	1.7	44
101	Effects of metallic and metal oxide nanoparticles in aquatic and terrestrial food chains. Biomarkers responses in invertebrates and bacteria. <i>International Journal of Nanotechnology</i> , 2012 , 9, 181	1.5	10
100	Environmental fate of nanoparticles: physical chemical and biological aspects? a few snapshots. <i>International Journal of Nanotechnology</i> , 2012 , 9, 167	1.5	2
99	More than the ions: the effects of silver nanoparticles on Lolium multiflorum. <i>Environmental Science & Environmental Science</i> & Environmental Science & Environmental & Envir	10.3	422
98	Ecotoxicology: Nanoparticle Reactivity and Living Organisms 2011 , 325-357		6

97	Strong chemical evidence for high Fe(II)-colloids and low As-bearing colloids (200nmfl0kDa) contents in groundwater and flooded paddy fields in Bangladesh: A size fractionation approach. <i>Applied Geochemistry</i> , 2011 , 26, 1665-1672	3.5	14
96	Reactivity at (nano)particle-water interfaces, redox processes, and arsenic transport in the environment. <i>Comptes Rendus - Geoscience</i> , 2011 , 343, 123-139	1.4	48
95	Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems. <i>Comptes Rendus - Geoscience</i> , 2011 , 343, 168-176	1.4	38
94	Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. <i>Environment International</i> , 2011 , 37, 1105-10	12.9	75
93	TiOEbased nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. <i>Environmental Pollution</i> , 2011 , 159, 1543-50	9.3	142
92	Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida. <i>Environmental Pollution</i> , 2011 , 159, 2698-705	9.3	50
91	Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. <i>Environmental Pollution</i> , 2011 , 159, 2515-22	9.3	107
90	Detection of environmental clastogens and aneugens in human fibroblasts by cytokinesis-blocked micronucleus assay associated with immunofluorescent staining of CENP-A in micronuclei. <i>Chemosphere</i> , 2011 , 84, 676-80	8.4	13
89	Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles. <i>Environmental Science & Environmental Sci</i>	10.3	58
88	Growth kinetic of single and double-walled aluminogermanate imogolite-like nanotubes: an experimental and modeling approach. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2682-9	3.6	43
87	Synthesis of Ge-imogolite: influence of the hydrolysis ratio on the structure of the nanotubes. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 14516-22	3.6	28
86	Kinetics of steel slag leaching: Batch tests and modeling. Waste Management, 2011, 31, 225-35	8.6	107
85	Surface Reactivity of Manufactured Nanoparticles 2011 , 269-290		4
84	Combining size fractionation, scanning electron microscopy, and X-ray absorption spectroscopy to probe zinc speciation in pig slurry. <i>Journal of Environmental Quality</i> , 2010 , 39, 531-40	3.4	24
83	Inorganic manufactured nanoparticles: how their physicochemical properties influence their biological effects in aqueous environments. <i>Nanomedicine</i> , 2010 , 5, 999-1007	5.6	65
82	Structural degradation at the surface of a TiO(2)-based nanomaterial used in cosmetics. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	167
81	Formation and Growth Mechanisms of Imogolite-Like Aluminogermanate Nanotubes. <i>Chemistry of Materials</i> , 2010 , 22, 2466-2473	9.6	53
80	Investigation of copper speciation in pig slurry by a multitechnique approach. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	44

(2008-2010)

79	Evidence of double-walled Al-Ge imogolite-like nanotubes. a cryo-TEM and SAXS investigation. Journal of the American Chemical Society, 2010 , 132, 1208-9	16.4	54
78	Speciation of Cd and Pb in dust emitted from sinter plant. <i>Chemosphere</i> , 2010 , 78, 445-50	8.4	85
77	Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. <i>Environmental Science & Environmental Sc</i>	10.3	179
76	Comparison of Methods for Fullerene Detection and Measurements of Reactive Oxygen Production in Cosmetic Products. <i>Environmental Engineering Science</i> , 2010 , 27, 797-804	2	19
75	Temporal variations in arsenic uptake by rice plants in Bangladesh: the role of iron plaque in paddy fields irrigated with groundwater. <i>Science of the Total Environment</i> , 2010 , 408, 4185-93	10.2	70
74	Aging of TiO(2) nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. <i>Environmental Pollution</i> , 2010 , 158, 3482-9	9.3	172
73	Modelling of Pb release during Portland cement alteration. Advances in Cement Research, 2009, 21, 1-10	01.8	6
72	Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. <i>Nature Nanotechnology</i> , 2009 , 4, 634-41	28.7	1306
71	Influence of arsenate species on the formation of Fe(III) oxyhydroxides and Fe(IIII) hydroxychloride. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 332, 26-35	5.1	17
70	Synthesis of imogolite fibers from decimolar concentration at low temperature and ambient pressure: a promising route for inexpensive nanotubes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 17080-1	16.4	57
69	Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. <i>Environmental Pollution</i> , 2009 , 157, 1127-33	9.3	416
68	The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 4409-4422	5.5	255
67	Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 4750-4760	5.5	26
66	Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis. <i>Nanotoxicology</i> , 2009 , 3, 284-295	5.3	122
65	CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. <i>Nanotoxicology</i> , 2009 , 3, 161-171	5.3	155
64	Hydration and dispersion of C60 in aqueous systems: the nature of water-fullerene interactions. <i>Langmuir</i> , 2009 , 25, 11232-5	4	98
63	Rhizosphere pH gradient controls copper availability in a strongly acidic soil. <i>Environmental Science & Environmental Science</i> & Environmental Science & Environmental & Environmenta	10.3	38
62	Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. <i>Langmuir</i> , 2008 , 24, 3215-22	4	167

61	Solubility of Fe∄ttringite (Ca6[Fe(OH)6]2(SO4)3№6H2O). <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 1-18	5.5	83
60	Determination of zinc speciation in basic oxygen furnace flying dust by chemical extractions and X-ray spectroscopy. <i>Chemosphere</i> , 2008 , 70, 1945-51	8.4	43
59	Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. <i>Environmental Science & Escherichia coli. Environmental Science & Escherichia coli. Esch</i>	10.3	427
58	Synthesis of large quantities of single-walled aluminogermanate nanotube. <i>Journal of the American Chemical Society</i> , 2008 , 130, 5862-3	16.4	65
57	Heavy metal tolerance in Stenotrophomonas maltophilia. <i>PLoS ONE</i> , 2008 , 3, e1539	3.7	79
56	Fractal Mechanisms in Coagulation/Flocculation Processes in Environmental Systems 2008, 149-178		
55	Apatite and Portland/apatite composite cements obtained using a hydrothermal method for retaining heavy metals. <i>Journal of Hazardous Materials</i> , 2008 , 150, 99-108	12.8	21
54	A role for adsorption in lead leachability from MSWI bottom ASH. Waste Management, 2008, 28, 1324-30	08.6	13
53	New methodological approach for the vanadium K-edge X-ray absorption near-edge structure interpretation: application to the speciation of vanadium in oxide phases from steel slag. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 5101-10	3.4	122
52	Toward direct, micron-scale XRF elemental maps and quantitative profiles of wet marine sediments. <i>Geochemistry, Geophysics, Geosystems</i> , 2007 , 8, n/a-n/a	3.6	36
51	Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach. <i>Journal of Hazardous Materials</i> , 2007 , 139, 537-42	12.8	155
50	Environmental Impact of Steel Slag Reused as Aggregates in Road Manufacturing: Molecular Mechanisms of Chromium and Vanadium Release. <i>AIP Conference Proceedings</i> , 2007 ,	Ο	3
49	Impact of irrigating rice paddies with groundwater containing arsenic in Bangladesh. <i>Science of the Total Environment</i> , 2006 , 367, 769-77	10.2	91
48	Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. <i>Integrated Environmental Assessment and Management</i> , 2006 , 2, 391-395	2.5	75
47	Rhenium migration at the Maqarin natural analogue site (Jordan). Radiochimica Acta, 2006, 94, 755-761	1.9	2
46	Affinity of C60 Fullerenes with Water. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 307-3	14 8	39
45	In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: A physicochemical and cyto-genotoxical study. <i>Environmental Science & Environmental </i>	3 ^{10.3}	180
44	New combination of EXAFS spectroscopy and density fractionation for the speciation of chromium within an andosol. <i>Environmental Science & Environmental Science & Environment</i>	10.3	38

(2003-2006)

43	Speciation of Cr and V within BOF steel slag reused in road constructions. <i>Journal of Geochemical Exploration</i> , 2006 , 88, 10-14	3.8	53
42	Zinc speciation in steel plant atmospheric emissions: A multi-technical approach. <i>Journal of Geochemical Exploration</i> , 2006 , 88, 239-242	3.8	18
41	Evolution of iron speciation during hydration of C4AF. Waste Management, 2006, 26, 720-4	8.6	23
40	Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	606
39	Nanotechnologies: Tools for sustainability in a new wave of water treatment processes 2006 , 2, 391		2
38	Nanotechnologies: tools for sustainability in a new wave of water treatment processes. <i>Integrated Environmental Assessment and Management</i> , 2006 , 2, 391-5	2.5	6
37	XAS study of iron and arsenic speciation during Fe(II) oxidation in the presence of As(III). <i>Environmental Science & Discourse (Science & Discourse)</i> 2005, 39, 9478-85	10.3	64
36	DISTRIBUTION OF MAJOR AND TRACE ELEMENTS AT THE AGGREGATE SCALE IN A SOIL NATURALLY RICH IN TRACE ELEMENTS. <i>Soil Science</i> , 2005 , 170, 516-529	0.9	4
35	Characterization of Iron-Oxides Formed by Oxidation of Ferrous Ions in the Presence of Various Bacterial Species and Inorganic Ligands. <i>Geomicrobiology Journal</i> , 2004 , 21, 99-112	2.5	68
34	Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia. <i>Comptes Rendus - Geoscience</i> , 2004 , 336, 567-577	1.4	40
33	Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part II: Evidence from sediment incubations. <i>Geochimica Et Cosmochimica Acta</i> , 2004 , 68, 3475-3486	5.5	215
32	The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches. <i>Clay Minerals</i> , 2004 , 39, 453-467	1.3	23
31	Evolution of Pb speciation in Portland cement during leaching. <i>European Physical Journal Special Topics</i> , 2003 , 107, 143-146		2
30	Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes. <i>Journal of Membrane Science</i> , 2003 , 227, 207-217	9.6	62
29	Chemistry and structure of colloids obtained by hydrolysis of Fe(III) in the presence of SiO4 ligands. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2003 , 217, 121-128	5.1	62
28	Zirconium speciation in microgels: kinetics aspects. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2003 , 217, 159-164	5.1	1
27	Aqueous Zirconium Complexes for Gelling Polymers. A Combined X-ray Absorption Spectroscopy and Quantum Mechanical Study. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 2910-2920	3.4	27
26	First insights of Cr speciation in leached Portland cement using X-ray spectromicroscopy. <i>Environmental Science & Environmental Science & Environment</i>	10.3	20

25	Synthesis and characterization of Manganese doped ferroxane nanoparticles. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 800, 27		1
24	Effect of leaching on the crystallographic sites of Itrace metals associated with natural cements (site of Maqarin, Jordan): Case of Cr. European Physical Journal Special Topics, 2003, 104, 447-450		2
23	Characteristics of ultrafiltration ceramic membranes derived from alumoxane nanoparticles. Journal of Membrane Science, 2002 , 205, 33-43	9.6	43
22	Hydrolysis of Iron(II) Chloride under Anoxic Conditions and Influence of SiO4Ligands. <i>Langmuir</i> , 2002 , 18, 4292-4299	4	17
21	Synthesis and Characterization of Carboxylate BeOOH Nanoparticles (Ferroxanes) and Ferroxane-Derived Ceramics. <i>Chemistry of Materials</i> , 2002 , 14, 621-628	9.6	41
20	Zirconium speciation in lactate solutions and polyacrylate gels. <i>Journal of Synchrotron Radiation</i> , 2001 , 8, 686-8	2.4	11
19	Speciation and Crystal Chemistry of Iron(III) Chloride Hydrolyzed in the Presence of SiO4 Ligands. 3. Semilocal Scale Structure of the Aggregates. <i>Langmuir</i> , 2001 , 17, 4753-4757	4	17
18	Speciation and Crystal Chemistry of Fe(III) Chloride Hydrolyzed in the Presence of SiO4 Ligands. 2. Characterization of SiBe Aggregates by FTIR and 29Si Solid-State NMR. <i>Langmuir</i> , 2001 , 17, 1399-1405	4	68
17	X-ray Absorption Spectroscopy Study of Immobilization Processes for Heavy Metals in Calcium Silicate Hydrates. 2. Zinc. <i>Langmuir</i> , 2001 , 17, 3658-3665	4	50
16	Crystal Chemistry of Colloids Obtained by Hydrolysis of Fe(III) in the Presence of SiO4 Ligands. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 658, 3361		
15	Speciation and Crystal Chemistry of Iron(III) Chloride Hydrolyzed in the Presence of SiO4 Ligands. 1. An Fe K-Edge EXAFS Study. <i>Langmuir</i> , 2000 , 16, 4726-4731	4	85
14	X-ray Absorption Spectroscopy Study of Immobilization Processes for Heavy Metals in Calcium Silicate Hydrates: 1. Case of Lead. <i>Langmuir</i> , 2000 , 16, 9900-9906	4	42
13	Lead, zinc and chromium (III) and (VI) speciation in hydrated cement phases. <i>Waste Management Series</i> , 2000 , 1, 269-280		6
12	Coagulation-Flocculation of Natural Organic Matter with Al Salts: Speciation and Structure of the Aggregates. <i>Environmental Science & Environmental S</i>	10.3	81
11	Chemistry and structure of aggregates formed with Fe-salts and natural organic matter. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1999 , 147, 297-308	5.1	90
10	Iron speciation in natural organic matter colloids. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1998 , 136, 11-19	5.1	52
9	Nucleation and Growth Mechanisms of Iron Oxyhydroxides in the Presence of PO4lons. 4. Structure of the Aggregates. <i>Langmuir</i> , 1997 , 13, 3886-3889	4	16
8	Nucleation and Growth Mechanisms of Fe Oxyhydroxide in the Presence of PO4 Ions. 2. P K-Edge EXAFS Study. <i>Langmuir</i> , 1997 , 13, 1827-1834	4	76

LIST OF PUBLICATIONS

7	Nucleation and Growth Mechanisms of Iron Oxyhydroxides in the Presence of PO4 Ions. 3. Speciation of Fe by Small Angle X-ray Scattering. <i>Langmuir</i> , 1997 , 13, 3882-3885	4	22	
6	Structure and Mechanisms of Formation of FeOOH(NO3) Oligomers in the Early Stages of Hydrolysis. <i>Langmuir</i> , 1997 , 13, 3240-3246	4	53	
5	Physico-chemical study of fouling mechanisms of ultrafiltration membrane on Biwa lake (Japan). <i>Journal of Membrane Science</i> , 1997 , 130, 53-62	9.6	32	
4	Nucleation and Growth Mechanisms of Fe Oxyhydroxide in the Presence of PO4 Ions. 1. Fe K-Edge EXAFS Study. <i>Langmuir</i> , 1996 , 12, 6701-6707	4	100	
3	Nucleation and Growth of Fe(III)/PO4 Clusters. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 432, 151			
2	Electroweak studies in e+e- collisions: 12Physical Review D, 1988 , 38, 2665-2678	4.9	15	
1	Goethite, a tailor-made host for the critical metal scandium: The FexSc(1-x)OOH solid solution. Geochemical Perspectives Letters,16-20	3	18	