Jerome Rose

List of Publications by Citations

Source: https://exaly.com/author-pdf/8651468/jerome-rose-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

204 11,644 54 102 g-index

217 12,688 6.7 6
ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
204	Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. <i>Nature Nanotechnology</i> , 2009 , 4, 634-41	28.7	1306
203	Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	606
202	Potential scenarios for nanomaterial release and subsequent alteration in the environment. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 50-9	3.8	457
201	Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. <i>Environmental Science & Escherichia coli. Environmental Science & Escherichia coli. Esch</i>	10.3	427
200	More than the ions: the effects of silver nanoparticles on Lolium multiflorum. <i>Environmental Science & Environmental & Enviro</i>	10.3	422
199	Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. <i>Environmental Pollution</i> , 2009 , 157, 1127-33	9.3	416
198	The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 4409-4422	5.5	255
197	Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part II: Evidence from sediment incubations. <i>Geochimica Et Cosmochimica Acta</i> , 2004 , 68, 3475-3486	5.5	215
196	In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: A physicochemical and cyto-genotoxical study. <i>Environmental Science & Environmental </i>	73 ^{10.3}	180
195	Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. <i>Environmental Science & Environmental Sc</i>	10.3	179
194	Aging of TiO(2) nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. <i>Environmental Pollution</i> , 2010 , 158, 3482-9	9.3	172
193	Structural degradation at the surface of a TiO(2)-based nanomaterial used in cosmetics. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	167
192	Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. <i>Langmuir</i> , 2008 , 24, 3215-22	4	167
191	CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. <i>Nanotoxicology</i> , 2009 , 3, 161-171	5.3	155
190	Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach. <i>Journal of Hazardous Materials</i> , 2007 , 139, 537-42	12.8	155
189	Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste. <i>Cement and Concrete Research</i> , 2015 , 67, 138-147	10.3	153
188	TiOEbased nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. <i>Environmental Pollution</i> , 2011 , 159, 1543-50	9.3	142

(2014-2013)

187	Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation. <i>Environmental Science & Environmental Science </i>	10.3	136
186	Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis. <i>Nanotoxicology</i> , 2009 , 3, 284-295	5.3	122
185	New methodological approach for the vanadium K-edge X-ray absorption near-edge structure interpretation: application to the speciation of vanadium in oxide phases from steel slag. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 5101-10	3.4	122
184	Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona?. <i>Nanoscale</i> , 2013 , 5, 1658-68	7.7	110
183	Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. <i>Environmental Pollution</i> , 2011 , 159, 2515-22	9.3	107
182	Kinetics of steel slag leaching: Batch tests and modeling. Waste Management, 2011, 31, 225-35	8.6	107
181	Nucleation and Growth Mechanisms of Fe Oxyhydroxide in the Presence of PO4 Ions. 1. Fe K-Edge EXAFS Study. <i>Langmuir</i> , 1996 , 12, 6701-6707	4	100
180	Hydration and dispersion of C60 in aqueous systems: the nature of water-fullerene interactions. <i>Langmuir</i> , 2009 , 25, 11232-5	4	98
179	Nanoparticle Uptake in Plants: Gold Nanomaterial Localized in Roots of Arabidopsis thaliana by X-ray Computed Nanotomography and Hyperspectral Imaging. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 8682-8691	10.3	92
178	Impact of irrigating rice paddies with groundwater containing arsenic in Bangladesh. <i>Science of the Total Environment</i> , 2006 , 367, 769-77	10.2	91
177	Chemistry and structure of aggregates formed with Fe-salts and natural organic matter. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1999 , 147, 297-308	5.1	90
176	Speciation of Cd and Pb in dust emitted from sinter plant. <i>Chemosphere</i> , 2010 , 78, 445-50	8.4	85
175	Speciation and Crystal Chemistry of Iron(III) Chloride Hydrolyzed in the Presence of SiO4 Ligands. 1. An Fe K-Edge EXAFS Study. <i>Langmuir</i> , 2000 , 16, 4726-4731	4	85
174	Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. <i>Water Research</i> , 2014 , 51, 64-72	12.5	83
173	Solubility of FeBttringite (Ca6[Fe(OH)6]2(SO4)3[26H2O). <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 1-18	5.5	83
172	Coagulation-Flocculation of Natural Organic Matter with Al Salts: Speciation and Structure of the Aggregates. <i>Environmental Science & Environmental &</i>	10.3	81
171	Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS ONE, 2008, 3, e1539	3.7	79
170	Transfer, transformation, and impacts of ceria nanomaterials in aquatic mesocosms simulating a pond ecosystem. <i>Environmental Science & Environmental & Enviro</i>	10.3	78

169	Nucleation and Growth Mechanisms of Fe Oxyhydroxide in the Presence of PO4 Ions. 2. P K-Edge EXAFS Study. <i>Langmuir</i> , 1997 , 13, 1827-1834	4	76
168	Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. <i>Environment International</i> , 2011 , 37, 1105-10	12.9	75
167	Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. <i>Integrated Environmental Assessment and Management</i> , 2006 , 2, 391-395	2.5	75
166	Molecular insights of oxidation process of iron nanoparticles: spectroscopic, magnetic, and microscopic evidence. <i>Environmental Science & Environmental Science & Environment</i>	10.3	73
165	Temporal variations in arsenic uptake by rice plants in Bangladesh: the role of iron plaque in paddy fields irrigated with groundwater. <i>Science of the Total Environment</i> , 2010 , 408, 4185-93	10.2	70
164	Characterization of Iron-Oxides Formed by Oxidation of Ferrous Ions in the Presence of Various Bacterial Species and Inorganic Ligands. <i>Geomicrobiology Journal</i> , 2004 , 21, 99-112	2.5	68
163	Speciation and Crystal Chemistry of Fe(III) Chloride Hydrolyzed in the Presence of SiO4 Ligands. 2. Characterization of SiEe Aggregates by FTIR and 29Si Solid-State NMR. <i>Langmuir</i> , 2001 , 17, 1399-1405	4	68
162	Physico-chemical control over the single- or double-wall structure of aluminogermanate imogolite-like nanotubes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3780-6	16.4	65
161	Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. <i>Geoderma</i> , 2012 , 183-184, 100-108	6.7	65
160	Inorganic manufactured nanoparticles: how their physicochemical properties influence their biological effects in aqueous environments. <i>Nanomedicine</i> , 2010 , 5, 999-1007	5.6	65
159	Synthesis of large quantities of single-walled aluminogermanate nanotube. <i>Journal of the American Chemical Society</i> , 2008 , 130, 5862-3	16.4	65
158	XAS study of iron and arsenic speciation during Fe(II) oxidation in the presence of As(III). <i>Environmental Science & amp; Technology</i> , 2005 , 39, 9478-85	10.3	64
157	Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in caco-2 cells. <i>Particle and Fibre Toxicology</i> , 2012 , 9, 18	8.4	63
156	Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes. <i>Journal of Membrane Science</i> , 2003 , 227, 207-217	9.6	62
155	Chemistry and structure of colloids obtained by hydrolysis of Fe(III) in the presence of SiO4 ligands. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2003 , 217, 121-128	5.1	62
154	Aggregation and sedimentation of magnetite nanoparticle clusters. <i>Environmental Science: Nano</i> , 2016 , 3, 567-577	7.1	62
153	Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species. <i>PLoS ONE</i> , 2013 , 8, e71260	3.7	59
152	Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles. <i>Environmental Science & Environmental Sci</i>	10.3	58

(2010-2009)

151	Synthesis of imogolite fibers from decimolar concentration at low temperature and ambient pressure: a promising route for inexpensive nanotubes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 17080-1	16.4	57
150	Evidence of double-walled Al-Ge imogolite-like nanotubes. a cryo-TEM and SAXS investigation. Journal of the American Chemical Society, 2010 , 132, 1208-9	16.4	54
149	Formation and Growth Mechanisms of Imogolite-Like Aluminogermanate Nanotubes. <i>Chemistry of Materials</i> , 2010 , 22, 2466-2473	9.6	53
148	Structure and Mechanisms of Formation of FeOOH(NO3) Oligomers in the Early Stages of Hydrolysis. <i>Langmuir</i> , 1997 , 13, 3240-3246	4	53
147	Speciation of Cr and V within BOF steel slag reused in road constructions. <i>Journal of Geochemical Exploration</i> , 2006 , 88, 10-14	3.8	53
146	Iron speciation in natural organic matter colloids. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1998 , 136, 11-19	5.1	52
145	Long-term aging of a CeO(2) based nanocomposite used for wood protection. <i>Environmental Pollution</i> , 2014 , 188, 1-7	9.3	51
144	Synergistic effects of sulfate reducing bacteria and zero valent iron on zinc removal and stability in aquifer sediment. <i>Chemical Engineering Journal</i> , 2015 , 260, 83-89	14.7	50
143	Single-step formation of micron long (OH)3Al2O3Ge(OH) imogolite-like nanotubes. <i>Chemical Communications</i> , 2013 , 49, 11284-6	5.8	50
142	Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida. <i>Environmental Pollution</i> , 2011 , 159, 2698-705	9.3	50
141	X-ray Absorption Spectroscopy Study of Immobilization Processes for Heavy Metals in Calcium Silicate Hydrates. 2. Zinc. <i>Langmuir</i> , 2001 , 17, 3658-3665	4	50
140	Meeting the Needs for Released Nanomaterials Required for Further Testing-The SUN Approach. <i>Environmental Science & Environmental Science & Environme</i>	10.3	49
139	Reactivity at (nano)particle-water interfaces, redox processes, and arsenic transport in the environment. <i>Comptes Rendus - Geoscience</i> , 2011 , 343, 123-139	1.4	48
138	Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials. <i>NanoImpact</i> , 2017 , 8, 1-10	5.6	47
137	Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route. <i>Environmental Pollution</i> , 2012 , 163, 55-61	9.3	46
136	Ultrastructural interactions and genotoxicity assay of cerium dioxide nanoparticles on mouse oocytes. <i>International Journal of Molecular Sciences</i> , 2013 , 14, 21613-28	6.3	46
135	DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: Evidence of a clastogenic effect as a mechanism of genotoxicity. <i>Nanotoxicology</i> , 2015 , 9, 696-705	5.3	44
134	Investigation of copper speciation in pig slurry by a multitechnique approach. <i>Environmental Science</i> & amp; Technology, 2010 , 44, 6926-32	10.3	44

133	High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline. <i>Review of Scientific Instruments</i> , 2012 , 83, 063104	1.7	44
132	Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier. <i>Environmental Science & Environmental Science & Environ</i>	10.3	43
131	Growth kinetic of single and double-walled aluminogermanate imogolite-like nanotubes: an experimental and modeling approach. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2682-9	3.6	43
130	Determination of zinc speciation in basic oxygen furnace flying dust by chemical extractions and X-ray spectroscopy. <i>Chemosphere</i> , 2008 , 70, 1945-51	8.4	43
129	Characteristics of ultrafiltration ceramic membranes derived from alumoxane nanoparticles. Journal of Membrane Science, 2002 , 205, 33-43	9.6	43
128	X-ray Absorption Spectroscopy Study of Immobilization Processes for Heavy Metals in Calcium Silicate Hydrates: 1. Case of Lead. <i>Langmuir</i> , 2000 , 16, 9900-9906	4	42
127	Synthesis and Characterization of Carboxylate E eOOH Nanoparticles (Ferroxanes) and Ferroxane-Derived Ceramics. <i>Chemistry of Materials</i> , 2002 , 14, 621-628	9.6	41
126	Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia. <i>Comptes Rendus - Geoscience</i> , 2004 , 336, 567-577	1.4	40
125	Are interactions between organic compounds and nanoscale weathering minerals the key drivers of carbon storage in soils?. <i>Environmental Science & Environmental Science & Env</i>	10.3	39
124	Affinity of C60 Fullerenes with Water. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 307-	314 8	39
123	Chronic dosing of a simulated pond ecosystem in indoor aquatic mesocosms: fate and transport of CeO2 nanoparticles. <i>Environmental Science: Nano</i> , 2015 , 2, 653-663	7.1	38
122	Adsorption of arsenic on polyaluminum granulate. <i>Environmental Science & Environmental Science & Envi</i>	10.3	38
121	Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems. <i>Comptes Rendus - Geoscience</i> , 2011 , 343, 168-176	1.4	38
120	Rhizosphere pH gradient controls copper availability in a strongly acidic soil. <i>Environmental Science</i> & amp; Technology, 2009, 43, 5686-91	10.3	38
119	New combination of EXAFS spectroscopy and density fractionation for the speciation of chromium within an andosol. <i>Environmental Science & Environmental Science & Environment</i>	10.3	38
118	Cerium dioxide nanoparticles affect in vitro fertilization in mice. <i>Nanotoxicology</i> , 2016 , 10, 111-7	5.3	37
117	Environmental exposure to TiO nanomaterials incorporated in building material. <i>Environmental Pollution</i> , 2017 , 220, 1160-1170	9.3	36
116	Toward direct, micron-scale XRF elemental maps and quantitative profiles of wet marine sediments. <i>Geochemistry, Geophysics, Geosystems</i> , 2007 , 8, n/a-n/a	3.6	36

115	Aged TiO2-based nanocomposite used in sunscreens produces singlet oxygen under long-wave UV and sensitizes Escherichia coli to cadmium. <i>Environmental Science & Escherichia Coli to Cadmium</i> . <i>Environmental Science & Camp; Technology</i> , 2014 , 48, 5245-53	10.3	35	
114	High-Energy Resolution Fluorescence Detected X-Ray Absorption Spectroscopy: A Powerful New Structural Tool in Environmental Biogeochemistry Sciences. <i>Journal of Environmental Quality</i> , 2017 , 46, 1146-1157	3.4	35	
113	Arsenic binding to organic and inorganic sulfur species during microbial sulfate reduction: a sediment flow-through reactor experiment. <i>Environmental Chemistry</i> , 2013 , 10, 285	3.2	35	
112	An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems. <i>Scientific Reports</i> , 2014 , 4, 5608	4.9	34	
111	Structural incorporation of iron into Gelmogolite nanotubes: a promising step for innovative nanomaterials. <i>RSC Advances</i> , 2014 , 4, 49827-49830	3.7	33	
110	Exposure of juvenile Danio rerio to aged TiO[hanomaterial from sunscreen. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 3340-50	5.1	33	
109	Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex. <i>Water Research</i> , 2013 , 47, 3921-30	12.5	32	
108	Physico-chemical study of fouling mechanisms of ultrafiltration membrane on Biwa lake (Japan). <i>Journal of Membrane Science</i> , 1997 , 130, 53-62	9.6	32	
107	Toxicity evaluation of manufactured CeO2 nanoparticles before and after alteration: combined physicochemical and whole-genome expression analysis in Caco-2 cells. <i>BMC Genomics</i> , 2014 , 15, 700	4.5	31	
106	Pulmonary exposure to metallic nanomaterials during pregnancy irreversibly impairs lung development of the offspring. <i>Nanotoxicology</i> , 2017 , 11, 484-495	5.3	29	
105	Soil organo-mineral associations formed by co-precipitation of Fe, Si and Al in presence of organic ligands. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 260, 15-28	5.5	29	
104	Preparation of amino-functionalized silica in aqueous conditions. <i>Applied Surface Science</i> , 2013 , 266, 15.	5 <i>6</i> 1\$0	29	
103	Synthesis of Ge-imogolite: influence of the hydrolysis ratio on the structure of the nanotubes. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 14516-22	3.6	28	
102	Aqueous Zirconium Complexes for Gelling Polymers. A Combined X-ray Absorption Spectroscopy and Quantum Mechanical Study. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 2910-2920	3.4	27	
101	Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 4750-4760	5.5	26	
100	Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching. <i>Environmental Science & Dechnology</i> , 2017 , 51, 11669-11680	10.3	25	
99	Arsenate uptake by Al nanoclusters and other Al-based sorbents during water treatment. <i>Water Research</i> , 2016 , 88, 844-851	12.5	25	
98	Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (Fundulus heteroclitus) embryos. <i>Nanotoxicology</i> , 2014 , 8 Suppl 1, 167-76	5.3	24	

97	Combining size fractionation, scanning electron microscopy, and X-ray absorption spectroscopy to probe zinc speciation in pig slurry. <i>Journal of Environmental Quality</i> , 2010 , 39, 531-40	3.4	24
96	Evolution of iron speciation during hydration of C4AF. Waste Management, 2006, 26, 720-4	8.6	23
95	The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches. <i>Clay Minerals</i> , 2004 , 39, 453-467	1.3	23
94	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. <i>Environmental Science: Nano</i> , 2020 , 7, 13-36	7.1	23
93	Transformations of Nanoenabled Copper Formulations Govern Release, Antifungal Effectiveness, and Sustainability throughout the Wood Protection Lifecycle. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 1128-1138	10.3	22
92	Nucleation and Growth Mechanisms of Iron Oxyhydroxides in the Presence of PO4 Ions. 3. Speciation of Fe by Small Angle X-ray Scattering. <i>Langmuir</i> , 1997 , 13, 3882-3885	4	22
91	Very low concentration of cerium dioxide nanoparticles induce DNA damage, but no loss of vitality, in human spermatozoa. <i>Toxicology in Vitro</i> , 2018 , 50, 236-241	3.6	21
90	Nanometer-long Ge-imogolite nanotubes cause sustained lung inflammation and fibrosis in rats. <i>Particle and Fibre Toxicology</i> , 2014 , 11, 67	8.4	21
89	Influence of the length of imogolite-like nanotubes on their cytotoxicity and genotoxicity toward human dermal cells. <i>Chemical Research in Toxicology</i> , 2012 , 25, 2513-22	4	21
88	Apatite and Portland/apatite composite cements obtained using a hydrothermal method for retaining heavy metals. <i>Journal of Hazardous Materials</i> , 2008 , 150, 99-108	12.8	21
87	Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 9269-9277	5.1	20
86	Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 5960-8	5.1	20
85	First insights of Cr speciation in leached Portland cement using X-ray spectromicroscopy. <i>Environmental Science & Environmental Science & Environment</i>	10.3	20
84	Contribution of mesocosm testing to a single-step and exposure-driven environmental risk assessment of engineered nanomaterials. <i>NanoImpact</i> , 2019 , 13, 66-69	5.6	20
83	SERENADE: safer and ecodesign research and education applied to nanomaterial development, the new generation of materials safer by design. <i>Environmental Science: Nano</i> , 2017 , 4, 526-538	7.1	19
82	Arsenic speciation in cemented paste backfills and synthetic calciumBilicateBydrates. <i>Minerals Engineering</i> , 2012 , 39, 51-61	4.9	19
81	Comparison of Methods for Fullerene Detection and Measurements of Reactive Oxygen Production in Cosmetic Products. <i>Environmental Engineering Science</i> , 2010 , 27, 797-804	2	19
80	Drastic Change in Zinc Speciation during Anaerobic Digestion and Composting: Instability of Nanosized Zinc Sulfide. <i>Environmental Science & Environmental Science & Environme</i>	10.3	19

(2018-2015)

79	Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. <i>Comptes Rendus - Geoscience</i> , 2015 , 347, 35-42	1.4	18
78	The effect of surface modification of microfibrillated cellulose (MFC) by acid chlorides on the structural and thermomechanical properties of biopolyamide 4.10 nanocomposites. <i>Industrial Crops and Products</i> , 2018 , 116, 97-108	5.9	18
77	Design Defines the Effects of Nanoceria at a Low Dose on Soil Microbiota and the Potentiation of Impacts by the Canola Plant. <i>Environmental Science & Environmental Science &</i>	10.3	18
76	Location and evolution of the speciation of vanadium in bitumen and model of reclaimed bituminous mixes during ageing: Can vanadium serve as a tracer of the aged and fresh parts of the reclaimed asphalt pavement mixture?. <i>Fuel</i> , 2012 , 102, 423-430	7.1	18
75	Zinc speciation in steel plant atmospheric emissions: A multi-technical approach. <i>Journal of Geochemical Exploration</i> , 2006 , 88, 239-242	3.8	18
74	Goethite, a tailor-made host for the critical metal scandium: The FexSc(1-x)OOH solid solution. <i>Geochemical Perspectives Letters</i> ,16-20	3	18
73	Sulfur and oxygen isotope tracing in zero valent iron based In situ remediation system for metal contaminants. <i>Chemosphere</i> , 2013 , 90, 1366-71	8.4	17
72	Influence of arsenate species on the formation of Fe(III) oxyhydroxides and Fe(IIIII) hydroxychloride. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 332, 26-35	5.1	17
71	Hydrolysis of Iron(II) Chloride under Anoxic Conditions and Influence of SiO4Ligands. <i>Langmuir</i> , 2002 , 18, 4292-4299	4	17
70	Speciation and Crystal Chemistry of Iron(III) Chloride Hydrolyzed in the Presence of SiO4 Ligands. 3. Semilocal Scale Structure of the Aggregates. <i>Langmuir</i> , 2001 , 17, 4753-4757	4	17
69	Nucleation and Growth Mechanisms of Iron Oxyhydroxides in the Presence of PO4Ions. 4. Structure of the Aggregates. <i>Langmuir</i> , 1997 , 13, 3886-3889	4	16
68	Safe(r) by design implementation in the nanotechnology industry. <i>NanoImpact</i> , 2020 , 20, 100267	5.6	16
67	An overview of solid/liquid separation methods and size fractionation techniques for engineered nanomaterials in aquatic environment. <i>Environmental Technology Reviews</i> , 2013 , 2, 55-70	7.7	15
66	Electroweak studies in e+e- collisions: 12Physical Review D, 1988 , 38, 2665-2678	4.9	15
65	Anthropogenic Release and Distribution of Titanium Dioxide Particles in a River Downstream of a Nanomaterial Manufacturer Industrial Site. <i>Frontiers in Environmental Science</i> , 2020 , 8,	4.8	14
64	Strong chemical evidence for high Fe(II)-colloids and low As-bearing colloids (200nmfl0kDa) contents in groundwater and flooded paddy fields in Bangladesh: A size fractionation approach. <i>Applied Geochemistry</i> , 2011 , 26, 1665-1672	3.5	14
63	Environmental exposure of a simulated pond ecosystem to a CuO nanoparticle-based wood stain throughout its life cycle. <i>Environmental Science: Nano</i> , 2018 , 5, 2579-2589	7.1	14
62	Elaboration of Cellulose Nanocrystal/Ge-Imogolite Nanotube Multilayered Thin Films. <i>Langmuir</i> , 2018 , 34, 3386-3394	4	13

61	Is there a Trojan-horse effect during magnetic nanoparticles and metalloid cocontamination of human dermal fibroblasts?. <i>Environmental Science & Environmental Science & Envi</i>	10.3	13
60	Chemical element imaging for speleothem geochemistry: Application to a uranium-bearing corallite with aragonite diagenesis to opal (Eastern Siberia, Russia). <i>Chemical Geology</i> , 2012 , 294-295, 190-202	4.2	13
59	Detection of environmental clastogens and aneugens in human fibroblasts by cytokinesis-blocked micronucleus assay associated with immunofluorescent staining of CENP-A in micronuclei. <i>Chemosphere</i> , 2011 , 84, 676-80	8.4	13
58	A role for adsorption in lead leachability from MSWI bottom ASH. Waste Management, 2008, 28, 1324-3	30 8.6	13
57	Structural and physicalThemical behavior of a CeO2 nanoparticle based diesel additive during combustion and environmental release. <i>Environmental Science: Nano</i> , 2017 , 4, 1974-1980	7.1	12
56	Non-linear release dynamics for a CeO nanomaterial embedded in a protective wood stain, due to matrix photo-degradation. <i>Environmental Pollution</i> , 2018 , 241, 182-193	9.3	12
55	Respiratory hazard of Li-ion battery components: elective toxicity of lithium cobalt oxide (LiCoO) particles in a mouse bioassay. <i>Archives of Toxicology</i> , 2018 , 92, 1673-1684	5.8	11
54	Multi-scale X-ray computed tomography to detect and localize metal-based nanomaterials in lung tissues of in vivo exposed mice. <i>Scientific Reports</i> , 2018 , 8, 4408	4.9	11
53	Zirconium speciation in lactate solutions and polyacrylate gels. <i>Journal of Synchrotron Radiation</i> , 2001 , 8, 686-8	2.4	11
52	Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products. <i>Geochimica Et Cosmochimica Acta</i> , 2018 , 229, 53-64	5.5	10
51	Effects of metallic and metal oxide nanoparticles in aquatic and terrestrial food chains. Biomarkers responses in invertebrates and bacteria. <i>International Journal of Nanotechnology</i> , 2012 , 9, 181	1.5	10
50	Accelerated microwave assisted synthesis of alumino-germanate imogolite nanotubes. <i>RSC Advances</i> , 2016 , 6, 108146-108150	3.7	9
49	Monitoring the Environmental Aging of Nanomaterials: An Opportunity for Mesocosm Testing?. <i>Materials</i> , 2019 , 12,	3.5	7
48	Calcium coordination environment in precursor species to calcium carbonate mineral formation. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 259, 344-357	5.5	7
47	Remote Biodegradation of Ge-Imogolite Nanotubes Controlled by the Iron Homeostasis of Pseudomonas brassicacearum. <i>Environmental Science & Environmental Science & Environment</i>	10.3	7
46	Influence of structural defects of Ge-imogolite nanotubes on their toxicity towards Pseudomonas brassicacearum. <i>Environmental Science: Nano</i> , 2016 , 3, 839-846	7.1	7
45	Reply to comment on Fisichella et al. (2012), "Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in Caco-2 cells" by Faust et al. <i>Particle and Fibre Toxicology</i> , 2012 , 9, 39	8.4	6
44	Ecotoxicology: Nanoparticle Reactivity and Living Organisms 2011 , 325-357		6

43	Modelling of Pb release during Portland cement alteration. Advances in Cement Research, 2009, 21, 1-10	01.8	6
42	Lead, zinc and chromium (III) and (VI) speciation in hydrated cement phases. <i>Waste Management Series</i> , 2000 , 1, 269-280		6
41	The shape and speciation of Ag nanoparticles drive their impacts on organisms in a lotic ecosystem. <i>Environmental Science: Nano</i> , 2020 , 7, 3167-3177	7.1	6
40	Nanotechnologies: tools for sustainability in a new wave of water treatment processes. <i>Integrated Environmental Assessment and Management</i> , 2006 , 2, 391-5	2.5	6
39	Alignment of Ge-imogolite nanotubes in isomalt with tunable inter-tube distances. <i>RSC Advances</i> , 2017 , 7, 21323-21327	3.7	5
38	In Vitro Analysis of the Effects of ITER-Like Tungsten Nanoparticles: Cytotoxicity and Epigenotoxicity in BEAS-2B Cells. <i>Nanomaterials</i> , 2019 , 9,	5.4	5
37	DISTRIBUTION OF MAJOR AND TRACE ELEMENTS AT THE AGGREGATE SCALE IN A SOIL NATURALLY RICH IN TRACE ELEMENTS. <i>Soil Science</i> , 2005 , 170, 516-529	0.9	4
36	Colonisation of finfish substrate inhabited by black soldier fly larvae by blow flies, bacteria, and fungi. <i>Journal of Insects As Food and Feed</i> , 2020 , 6, 291-304	4.4	4
35	Surface Reactivity of Manufactured Nanoparticles 2011 , 269-290		4
34	CeO Nanomaterials from Diesel Engine Exhaust Induce DNA Damage and Oxidative Stress in Human and Rat Sperm In Vitro. <i>Nanomaterials</i> , 2020 , 10,	5.4	4
33	The SERENADE project; a step forward in the safe by design process of nanomaterials: The benefits of a diverse and interdisciplinary approach. <i>Nano Today</i> , 2021 , 37, 101065	17.9	4
32	Mechanisms limiting the release of TiO2 nanomaterials during photocatalytic cement alteration: the role of surface charge and porous network morphology. <i>Environmental Science: Nano</i> , 2019 , 6, 624-6	534 ¹	3
31	Design of model tokamak particles for future toxicity studies: Morphology and physical characterization. <i>Fusion Engineering and Design</i> , 2019 , 145, 60-65	1.7	3
30	Multivariate analysis of the exposure and hazard of ceria nanomaterials in indoor aquatic mesocosms. <i>Environmental Science: Nano</i> , 2020 , 7, 1661-1669	7.1	3
29	Environmental Impact of Steel Slag Reused as Aggregates in Road Manufacturing: Molecular Mechanisms of Chromium and Vanadium Release. <i>AIP Conference Proceedings</i> , 2007 ,	O	3
28	The necessity of investigating a freshwater-marine continuum using a mesocosm approach in nanosafety: The case study of TiO2 MNM-based photocatalytic cement. <i>NanoImpact</i> , 2020 , 20, 100254	5.6	3
27	Ontology-based NLP information extraction to enrich nanomaterial environmental exposure database. <i>Procedia Computer Science</i> , 2020 , 176, 360-369	1.6	3
26	In Vitro Co-Exposure to CeO Nanomaterials from Diesel Engine Exhaust and Benzo()Pyrene Induces Additive DNA Damage in Sperm and Cumulus Cells but Not in Oocytes. <i>Nanomaterials</i> , 2021 , 11,	5.4	3

25	3D Microanalysis of Porous Copper Using FIB-Tomography in Combination with X-ray Computed Tomography. <i>Microscopy and Microanalysis</i> , 2017 , 23, 254-255	0.5	2
24	Surface Properties (Physical and Chemical) and Related Reactions: Characterization via a Multi-Technique Approach. <i>Frontiers of Nanoscience</i> , 2015 , 8, 217-243	0.7	2
23	Environmental fate of nanoparticles: physical chemical and biological aspects? a few snapshots. <i>International Journal of Nanotechnology</i> , 2012 , 9, 167	1.5	2
22	Rhenium migration at the Maqarin natural analogue site (Jordan). Radiochimica Acta, 2006, 94, 755-761	1.9	2
21	Evolution of Pb speciation in Portland cement during leaching. <i>European Physical Journal Special Topics</i> , 2003 , 107, 143-146		2
20	Nanotechnologies: Tools for sustainability in a new wave of water treatment processes 2006 , 2, 391		2
19	Effect of leaching on the crystallographic sites of Errace metals associated with natural cements (site of Maqarin, Jordan): Case of Cr. European Physical Journal Special Topics, 2003, 104, 447-450		2
18	MESOCOSM: A mesocosm database management system for environmental nanosafety <i>NanoImpact</i> , 2021 , 21, 100288	5.6	2
17	Isotopically exchangeable Al in coastal lowland acid sulfate soils. <i>Science of the Total Environment</i> , 2016 , 542, 129-35	10.2	1
16	3D Characterization of Silicon Based Electrode Material for Advanced Lithium-Ion Storage Technologies. <i>Microscopy and Microanalysis</i> , 2017 , 23, 2026-2027	0.5	1
15	Application of membrane processes in fractionation of elements in river water. <i>Water Science and Technology</i> , 2015 , 72, 2277-90	2.2	1
14	Zirconium speciation in microgels: kinetics aspects. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2003 , 217, 159-164	5.1	1
13	Synthesis and characterization of Manganese doped ferroxane nanoparticles. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 800, 27		1
12	Aquatic Mesocosm Strategies for the Environmental Fate and Risk Assessment of Engineered Nanomaterials. <i>Environmental Science & Environmental Science</i>	10.3	1
11	In situ determination of engineered nanomaterial aggregation state in a cosmetic emulsion I toward safer-by-design products. <i>Environmental Science: Nano</i> , 2021 , 8, 3546-3559	7.1	1
10	Robustness of Indoor Aquatic Mesocosm Experimentations and Data Reusability to Assess the Environmental Risks of Nanomaterials. <i>Frontiers in Environmental Science</i> , 2021 , 9,	4.8	1
9	The SERENADE project IA step forward in the Safe by Design process of nanomaterials: Moving towards a product-oriented approach. <i>Nano Today</i> , 2021 , 39, 101238	17.9	1
8	Oxidative transformation of Tungsten (W) nanoparticles potentially released in aqueous and biological media in case of Tokamak (nuclear fusion) Lost of Vacuum Accident (LOVA). <i>Comptes Rendus - Geoscience</i> , 2020 , 352, 539-558	1.4	1

LIST OF PUBLICATIONS

- X-ray absorption spectroscopy evidence of sulfur-bound cadmium in the Cd-hyperaccumulator О Solanum nigrum and the non-accumulator Solanum melongena. Environmental Pollution, 2021, 279, 116897
- Potential of Ligand-Promoted Dissolution at Mild pH for the Selective Recovery of Rare Earth Elements in Bauxite Residues. ACS Sustainable Chemistry and Engineering, 2022, 10, 6942-6951
- 8.3
- Size fractionation of elements and nanoparticles in natural water by both dead-end and tangential 5 flow filtration. Desalination and Water Treatment, 2016, 57, 8194-8203
- Life cycle assessment of the application of nanoclays in wire coating. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012014

0.4

- Fractal Mechanisms in Coagulation/Flocculation Processes in Environmental Systems 2008, 149-178 3
- Crystal Chemistry of Colloids Obtained by Hydrolysis of Fe(III) in the Presence of SiO4 Ligands. Materials Research Society Symposia Proceedings, 2000, 658, 3361
- Nucleation and Growth of Fe(III)/PO4 Clusters. Materials Research Society Symposia Proceedings, 1 **1996**, 432, 151