Ralf P Richter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8651220/publications.pdf

Version: 2024-02-01

71102 66911 7,002 78 41 78 citations h-index g-index papers 89 89 89 7434 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A quartz crystal microbalance method to quantify the size of hyaluronan and other glycosaminoglycans on surfaces. Scientific Reports, 2022, 12, .	3.3	9
2	Strong Reduction of the Chain Rigidity of Hyaluronan by Selective Binding of Ca ²⁺ lons. Macromolecules, 2021, 54, 1137-1146.	4.8	12
3	Membrane binding controls ordered self-assembly of animal septins. ELife, 2021, 10, .	6.0	30
4	Polymer Brush in a Nanopore: Effects of Solvent Strength and Macromolecular Architecture Studied by Self-Consistent Field and Scaling Theory. Polymers, 2021, 13, 3929.	4.5	3
5	A Method to Quantify Molecular Diffusion within Thin Solvated Polymer Films: A Case Study on Films of Natively Unfolded Nucleoporins. ACS Nano, 2020, 14, 9938-9952.	14.6	2
6	Impact of Antigen Density on Recognition by Monoclonal Antibodies. Analytical Chemistry, 2020, 92, 5396-5403.	6.5	9
7	Electroresponsive Polyelectrolyte Brushes Studied by Self-Consistent Field Theory. Polymers, 2020, 12, 898.	4.5	9
8	Reversible Membrane Tethering by ZipA Determines FtsZ Polymerization in Two and Three Dimensions. Biochemistry, 2019, 58, 4003-4015.	2.5	6
9	Multivalent Recognition at Fluid Surfaces: The Interplay of Receptor Clustering and Superselectivity. Journal of the American Chemical Society, 2019, 141, 2577-2588.	13.7	41
10	Single-molecule kinetics of pore assembly by the membrane attack complex. Nature Communications, 2019, 10, 2066.	12.8	74
11	Effect of calcium ions and pH on the morphology and mechanical properties of hyaluronan brushes. Interface Focus, 2019, 9, 20180061.	3.0	13
12	An integrated assay to probe endothelial glycocalyx-blood cell interactions under flow in mechanically and biochemically well-defined environments. Matrix Biology, 2019, 78-79, 47-59.	3.6	15
13	Blood cell - vessel wall interactions probed by reflection interference contrast microscopy., 2019,,.		0
14	Membrane-containing virus particles exhibit the mechanics of a composite material for genome protection. Nanoscale, 2018, 10, 7769-7779.	5.6	12
15	Reversible Immobilization of Proteins in Sensors and Solidâ€State Nanopores. Small, 2018, 14, e1703357.	10.0	30
16	Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets?. Current Opinion in Structural Biology, 2018, 50, 65-74.	5.7	54
17	Editorial overview: Carbohydrates: Ménage à trois with glycosaminoglycans — a serious rendezvous, not a gag!. Current Opinion in Structural Biology, 2018, 50, iv-vi.	5.7	O
18	Structure and properties of polydisperse polyelectrolyte brushes studied by self-consistent field theory. Soft Matter, 2018, 14, 6230-6242.	2.7	16

#	Article	IF	Citations
19	Elastohydrodynamic Lift at a Soft Wall. Physical Review Letters, 2018, 120, 198001.	7.8	36
20	Single-Molecule Unbinding Forces between the Polysaccharide Hyaluronan and Its Binding Proteins. Biophysical Journal, 2018, 114, 2910-2922.	0.5	23
21	Binding of the chemokine CXCL12α to its natural extracellular matrix ligand heparan sulfate enables myoblast adhesion and facilitates cell motility. Biomaterials, 2017, 123, 24-38.	11.4	15
22	Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin. Journal of the American Chemical Society, 2017, 139, 4157-4167.	13.7	86
23	Differential structural remodelling of heparan sulfate by chemokines: the role of chemokine oligomerization. Open Biology, 2017, 7, 160286.	3.6	37
24	Development of a selective cell capture and release assay: impact of clustered RGD ligands. Journal of Materials Chemistry B, 2017, 5, 4745-4753.	5.8	8
25	Enhanced Biological Activity of BMPâ€2 Bound to Surfaceâ€Grafted Heparan Sulfate. Advanced Biology, 2017, 1, e1600041.	3.0	24
26	A single molecule assay to probe monovalent and multivalent bonds between hyaluronan and its key leukocyte receptor CD44 under force. Scientific Reports, 2016, 6, 34176.	3.3	38
27	Micromechanical Analysis of the Hyaluronan-Rich Matrix Surrounding the Oocyte Reveals a Uniquely Soft and Elastic Composition. Biophysical Journal, 2016, 110, 2779-2789.	0.5	31
28	A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies. ELife, $2016, 5, \ldots$	6.0	69
29	Cytokines and growth factors cross-link heparan sulfate. Open Biology, 2015, 5, 150046.	3.6	55
30	Metal Ion-dependent Heavy Chain Transfer Activity of TSG-6 Mediates Assembly of the Cumulus-Oocyte Matrix. Journal of Biological Chemistry, 2015, 290, 28708-28723.	3.4	46
31	Sensor Based on Aptamer Folding to Detect Low-Molecular Weight Analytes. Analytical Chemistry, 2015, 87, 7566-7574.	6.5	47
32	Interaction of Hyaluronan with Cationic Nanoparticles. Langmuir, 2015, 31, 8411-8420.	3.5	6
33	pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic) Tj ETQq1 1 0.784314 rgBT /Overlock Microbalance with Dissipation Monitoring. Langmuir, 2015, 31, 7684-7694.	10 Tf 50 3.5	187 Td (acid) 40
34	Designing multivalent probes for tunable superselective targeting. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5579-5584.	7.1	104
35	A new configurational bias scheme for sampling supramolecular structures. Journal of Chemical Physics, 2014, 141, 244909.	3.0	16
36	Incorporation of Pentraxin 3 into Hyaluronan Matrices Is Tightly Regulated and Promotes Matrix Cross-linking. Journal of Biological Chemistry, 2014, 289, 30481-30498.	3.4	67

#	Article	IF	CITATIONS
37	A quartz crystal microbalance method to study the terminal functionalization of glycosaminoglycans. Chemical Communications, 2014, 50, 15148-15151.	4.1	52
38	Quartz Crystal Microbalance with Dissipation Monitoring and Spectroscopic Ellipsometry Measurements of the Phospholipid Bilayer Anchoring Stability and Kinetics of Hydrophobically Modified DNA Oligonucleotides. Langmuir, 2014, 30, 6525-6533.	3.5	39
39	Well-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels. Biomaterials, 2014, 35, 8903-8915.	11.4	57
40	Superselective Targeting Using Multivalent Polymers. Journal of the American Chemical Society, 2014, 136, 1722-1725.	13.7	92
41	Transient Exposure of Pulmonary Surfactant to Hyaluronan Promotes Structural and Compositional Transformations into a Highly Active State. Journal of Biological Chemistry, 2013, 288, 29872-29881.	3.4	20
42	Self-assembly and elasticity of hierarchical proteoglycan–hyaluronan brushes. Soft Matter, 2013, 9, 10473.	2.7	25
43	Solid-supported lipid bilayers to drive stem cell fate and tissue architecture using periosteum derived progenitor cells. Biomaterials, 2013, 34, 1878-1887.	11.4	51
44	Cohesiveness tunes assembly and morphology of FG nucleoporin domain meshworks – Implications for nuclear pore permeability. Biophysical Journal, 2013, 105, 1860-1870.	0.5	42
45	Inter-α-inhibitor Impairs TSG-6-induced Hyaluronan Cross-linking. Journal of Biological Chemistry, 2013, 288, 29642-29653.	3.4	60
46	Viscoelasticity of Thin Biomolecular Films: A Case Study on Nucleoporin Phenylalanine-Glycine Repeats Grafted to a Histidine-Tag Capturing QCM-D Sensor. Biomacromolecules, 2012, 13, 2322-2332.	5 . 4	86
47	Films of End-Grafted Hyaluronan Are a Prototype of a Brush of a Strongly Charged, Semiflexible Polyelectrolyte with Intrinsic Excluded Volume. Biomacromolecules, 2012, 13, 1466-1477.	5. 4	44
48	Hydration Dynamics of Hyaluronan and Dextran. Biophysical Journal, 2012, 103, L10-L12.	0.5	47
49	Combining Colloidal Probe Atomic Force and Reflection Interference Contrast Microscopy to Study the Compressive Mechanics of Hyaluronan Brushes. Langmuir, 2012, 28, 3206-3216.	3 . 5	23
50	Hearing What You Cannot See and Visualizing What You Hear: Interpreting Quartz Crystal Microbalance Data from Solvated Interfaces. Analytical Chemistry, 2011, 83, 8838-8848.	6.5	696
51	The sweet coat of living cells – from supramolecular structure and dynamics to biological function. International Journal of Materials Research, 2011, 102, 903-905.	0.3	4
52	The Inflammation-associated Protein TSG-6 Cross-links Hyaluronan via Hyaluronan-induced TSG-6 Oligomers. Journal of Biological Chemistry, 2011, 286, 25675-25686.	3.4	119
53	Ultrathin nucleoporin phenylalanine–glycine repeat films and their interaction with nuclear transport receptors. EMBO Reports, 2010, 11, 366-372.	4. 5	101
54	Analysis of CD44-Hyaluronan Interactions in an Artificial Membrane System. Journal of Biological Chemistry, 2010, 285, 30170-30180.	3.4	187

#	Article	IF	CITATIONS
55	Dynamic Modulation of the Glycosphingolipid Content in Supported Lipid Bilayers by Glycolipid Transfer Protein. Biophysical Journal, 2010, 99, 2947-2956.	0.5	29
56	Label-Free Detection of Clustering of Membrane-Bound Proteins. Analytical Chemistry, 2010, 82, 9275-9281.	6. 5	73
57	On the Adsorption Behavior of Biotin-Binding Proteins on Gold and Silica. Langmuir, 2010, 26, 1029-1034.	3.5	51
	Water Content and Buildup of Poly(diallyldimethylammonium chloride)/Poly(sodium) Tj ETQq0 0 0 rgBT /Overlock		632 Td (4-st
58	Polyelectrolyte Multilayers Studied by an in Situ Combination of a Quartz Crystal Microbalance with Dissipation Monitoring and Spectroscopic Ellipsometry. Macromolecules, 2010, 43, 9063-9070.	4.8	114
59	Dissipation in Films of Adsorbed Nanospheres Studied by Quartz Crystal Microbalance (QCM). Analytical Chemistry, 2009, 81, 8167-8176.	6.5	148
60	QCM-D and Reflectometry Instrument: Applications to Supported Lipid Structures and Their Biomolecular Interactions. Analytical Chemistry, 2009, 81, 349-361.	6.5	102
61	Model-Independent Analysis of QCM Data on Colloidal Particle Adsorption. Langmuir, 2009, 25, 5177-5184.	3.5	133
62	Orientationâ€Selective Incorporation of Transmembrane F _O F ₁ ATP Synthase Complex from <i>Micrococcus luteus</i> in Polymerâ€Supported Membranes. Macromolecular Bioscience, 2008, 8, 1034-1043.	4.1	16
63	Solvation Effects in the Quartz Crystal Microbalance with Dissipation Monitoring Response to Biomolecular Adsorption. A Phenomenological Approach. Analytical Chemistry, 2008, 80, 8880-8890.	6.5	132
64	Assembly of Multilayer Arrays of Viral Nanoparticles via Biospecific Recognition: A Quartz Crystal Microbalance with Dissipation Monitoring Study. Biomacromolecules, 2008, 9, 456-462.	5.4	56
65	Membrane-Grafted Hyaluronan Films:Â A Well-Defined Model System of Glycoconjugate Cell Coats. Journal of the American Chemical Society, 2007, 129, 5306-5307.	13.7	70
66	Formation of Solid-Supported Lipid Bilayers:  An Integrated View. Langmuir, 2006, 22, 3497-3505.	3.5	980
67	FG-Rich Repeats of Nuclear Pore Proteins Form a Three-Dimensional Meshwork with Hydrogel-Like Properties. Science, 2006, 314, 815-817.	12.6	555
68	Vesicles surfing on a lipid bilayer: Self-induced haptotactic motion. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12382-12387.	7.1	81
69	Enzyme immobilization on poly(ethylene-co-acrylic acid) films studied by quartz crystal microbalance with dissipation monitoring. Journal of Colloid and Interface Science, 2005, 287, 35-42.	9.4	47
70	Following the Formation of Supported Lipid Bilayers on Mica: A Study Combining AFM, QCM-D, and Ellipsometry. Biophysical Journal, 2005, 88, 3422-3433.	0.5	424
71	On the Kinetics of Adsorption and Two-Dimensional Self-Assembly of Annexin A5 on Supported Lipid Bilayers. Biophysical Journal, 2005, 89, 3372-3385.	0.5	133
72	On the Effect of the Solid Support on the Interleaflet Distribution of Lipids in Supported Lipid Bilayers. Langmuir, 2005, 21, 299-304.	3.5	100

#	Article	IF	CITATION
73	Effects of flow on solute exchange between fluids and supported biosurfaces. Biotechnology and Applied Biochemistry, 2004, 39, 277-284.	3.1	22
74	QCM-D on Mica for Parallel QCM-DAFM Studies. Langmuir, 2004, 20, 4609-4613.	3.5	62
75	Supported lipid membranes. Materials Today, 2003, 6, 32-37.	14.2	56
76	Characterization of Lipid Bilayers and Protein Assemblies Supported on Rough Surfaces by Atomic Force Microscopyâ€. Langmuir, 2003, 19, 1632-1640.	3.5	103
77	Pathways of Lipid Vesicle Deposition on Solid Surfaces: A Combined QCM-D and AFM Study. Biophysical Journal, 2003, 85, 3035-3047.	0.5	604
78	Binding of a model regulator of complement activation (RCA) to a biomaterial surface: surface-bound factor H inhibits complement activation. Biomaterials, 2001, 22, 2435-2443.	11.4	57