
Loredana Baccigalupi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8650694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Bacillus Species Used for Oral Bacteriotherapy and Bacterioprophylaxis of Gastrointestinal Disorders. Applied and Environmental Microbiology, 2000, 66, 5241-5247.	1.4	198
2	Fate and Dissemination of Bacillus subtilis Spores in a Murine Model. Applied and Environmental Microbiology, 2001, 67, 3819-3823.	1.4	142
3	Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity. PLoS ONE, 2015, 10, e0134893.	1.1	135
4	Characterization of Two <i>Bacillus</i> Probiotics. Applied and Environmental Microbiology, 1999, 65, 4288-4291.	1.4	118
5	Defining the natural habitat of Bacillus spore-formers. Research in Microbiology, 2009, 160, 375-379.	1.0	113
6	Carotenoids found in <i>Bacillus</i> . Journal of Applied Microbiology, 2009, 108, 1889-902.	1.4	84
7	Characterization of spore forming Bacilli isolated from the human gastrointestinal tract. Journal of Applied Microbiology, 2008, 105, 2178-2186.	1.4	75
8	Oral Vaccine Delivery by Recombinant Spore Probiotics. International Reviews of Immunology, 2009, 28, 487-505.	1.5	63
9	A Marine Isolate of Bacillus pumilus Secretes a Pumilacidin Active against Staphylococcus aureus. Marine Drugs, 2018, 16, 180.	2.2	59
10	Dietary fructose causes defective insulin signalling and ceramide accumulation in the liver that can be reversed by gut microbiota modulation. Food and Nutrition Research, 2017, 61, 1331657.	1.2	44
11	<i>Bacillus subtilis</i> builds structurally and functionally different spores in response to the temperature of growth. Environmental Microbiology, 2020, 22, 170-182.	1.8	42
12	Small surface-associated factors mediate adhesion of a food-isolated strain of Lactobacillus fermentum to Caco-2 cells. Research in Microbiology, 2005, 156, 830-836.	1.0	38
13	Characterization of intestinal bacteria tightly bound to the human ileal epithelium. Research in Microbiology, 2009, 160, 817-823.	1.0	36
14	CotC-CotU Heterodimerization during Assembly of the Bacillus subtilis Spore Coat. Journal of Bacteriology, 2008, 190, 1267-1275.	1.0	34
15	The <i>sps</i> Gene Products Affect the Germination, Hydrophobicity, and Protein Adsorption of Bacillus subtilis Spores. Applied and Environmental Microbiology, 2014, 80, 7293-7302.	1.4	34
16	Flexibility of the Prograamme of Spore Coat Formation in Bacillus subtilis: Bypass of CotE Requirement by Over-Production of CotH. PLoS ONE, 2013, 8, e74949.	1.1	30
17	Lactobacillus gasseri SF1183 protects the intestinal epithelium and prevents colitis symptoms in vivo. Journal of Functional Foods, 2018, 42, 195-202.	1.6	28
18	Direct and Indirect Control of Late Sporulation Genes by GerR of <i>Bacillus subtilis</i> . Journal of Bacteriology, 2010, 192, 3406-3413.	1.0	24

Loredana Baccigalupi

#	Article	IF	CITATIONS
19	Organization and Evolution of the <i>cotG</i> and <i>cotH</i> Genes of Bacillus subtilis. Journal of Bacteriology, 2011, 193, 6664-6673.	1.0	23
20	Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis. Microbial Cell Factories, 2014, 13, 115.	1.9	22
21	Beneficial effects of carotenoid-producing cells of Bacillus indicus HU16 in a rat model of diet-induced metabolic syndrome. Beneficial Microbes, 2017, 8, 823-831.	1.0	22
22	A probiotic treatment increases the immune response induced by the nasal delivery of spore-adsorbed TTFC. Microbial Cell Factories, 2020, 19, 42.	1.9	22
23	A protein phosphorylation module patterns the <i>Bacillus subtilis</i> spore outer coat. Molecular Microbiology, 2020, 114, 934-951.	1.2	20
24	Antagonistic Role of CotG and CotH on Spore Germination and Coat Formation in Bacillus subtilis. PLoS ONE, 2014, 9, e104900.	1.1	20
25	Lactobacillus gasseri SF1183 Affects Intestinal Epithelial Cell Survival and Growth. PLoS ONE, 2013, 8, e69102.	1.1	18
26	GerE-independent expression of cotH leads to CotC accumulation in the mother cell compartment during Bacillus subtilis sporulation. Microbiology (United Kingdom), 2004, 150, 3441-3449.	0.7	16
27	Matrix Production, Pigment Synthesis, and Sporulation in a Marine Isolated Strain of Bacillus pumilus. Marine Drugs, 2015, 13, 6472-6488.	2.2	16
28	Population genomic, olfactory, dietary, and gut microbiota analyses demonstrate the unique evolutionary trajectory of feral pigs. Molecular Ecology, 2022, 31, 220-237.	2.0	16
29	The temperature of growth and sporulation modulates the efficiency of spore-display in Bacillus subtilis. Microbial Cell Factories, 2020, 19, 185.	1.9	15
30	The Exosporium of Bacillus megaterium QM B1551 Is Permeable to the Red Fluorescence Protein of the Coral Discosoma sp Frontiers in Microbiology, 2016, 7, 1752.	1.5	14
31	An antimicrobial peptide specifically active against Listeria monocytogenes is secreted by Bacillus pumilus SF214. BMC Microbiology, 2022, 22, 3.	1.3	14
32	Efficient insertional mutagenesis in Streptococcus thermophilus. Gene, 2000, 258, 9-14.	1.0	13
33	Transcriptional analysis of the recA gene of Streptococcus thermophilus. Microbial Cell Factories, 2006, 5, 29.	1.9	13
34	The Direct Interaction between Two Morphogenetic Proteins Is Essential for Spore Coat Formation in Bacillus subtilis. PLoS ONE, 2015, 10, e0141040.	1.1	11
35	The spore surface of intestinal isolates ofBacillus subtilis. FEMS Microbiology Letters, 2014, 358, 194-201.	0.7	10
36	CotG-Like Modular Proteins Are Common among Spore-Forming Bacilli. Journal of Bacteriology, 2016, 198, 1513-1520.	1.0	10

3

Loredana Baccigalupi

#	Article	IF	CITATIONS
37	Spore Formers as Beneficial Microbes for Humans and Animals. Applied Microbiology, 2021, 1, 498-509.	0.7	10
38	Induction of a Specific Humoral Immune Response by Nasal Delivery of Bcla2ctd of Clostridioides difficile. International Journal of Molecular Sciences, 2020, 21, 1277.	1.8	9
39	Micellar Antibiotics of Bacillus. Pharmaceutics, 2021, 13, 1296.	2.0	9
40	Control of ilvIH transcription during amino acid downshift in stringent and relaxed strains of Escherichia coli. FEMS Microbiology Letters, 1995, 131, 95-98.	0.7	8
41	Spore Adsorption as a Nonrecombinant Display System for Enzymes and Antigens. Journal of Visualized Experiments, 2019, , .	0.2	8
42	Spore-adsorption: Mechanism and applications of a non-recombinant display system. Biotechnology Advances, 2021, 47, 107693.	6.0	8
43	Spore coat differentiation in Bacillus subtilis. Research in Microbiology, 1997, 148, 5-9.	1.0	7
44	The DINGGG thermoprotein is membrane bound in the Crenarchaeon Sulfolobus solfataricus. Chemical and Biological Technologies in Agriculture, 2016, 3, .	1.9	5
45	Nasal Immunization with the C-Terminal Domain of Bcla3 Induced Specific IgG Production and Attenuated Disease Symptoms in Mice Infected with Clostridioides difficile Spores. International Journal of Molecular Sciences, 2020, 21, 6696.	1.8	5
46	Non-LAB Probiotics: Spore Formers. , 2015, , 93-104.		5