List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8650672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating the interfacial toughness of GaN-on-diamond with an improved analysis using nanoindentation. Scripta Materialia, 2022, 209, 114370.	2.6	4
2	Breakdown Mechanisms in <i>β</i> -Ga ₂ O ₃ Trench-MOS Schottky-Barrier Diodes. IEEE Transactions on Electron Devices, 2022, 69, 75-81.	1.6	9
3	Study of Drain Injected Breakdown Mechanisms in AlGaN/GaN-on-SiC HEMTs. IEEE Transactions on Electron Devices, 2022, 69, 525-530.	1.6	2
4	A trapping tolerant drain current based temperature measurement of <i>î²</i> -Ga ₂ O ₃ MOSFETs. Applied Physics Letters, 2022, 120, 073502.	1.5	4
5	Thermal characterization of direct wafer bonded Si-on-SiC. Applied Physics Letters, 2022, 120, 113503.	1.5	2
6	In situ Thermoreflectance Characterization of Thermal Resistance in Multilayer Electronics Packaging. ACS Applied Electronic Materials, 2022, 4, 1558-1566.	2.0	8
7	Unusual Deformation and Fracture in Gallium Telluride Multilayers. Journal of Physical Chemistry Letters, 2022, 13, 3831-3839.	2.1	9
8	Ga ₂ O ₃ – diamond for next generation power electronics. , 2022, , .		1
9	Gallium nitride phononic integrated circuits platform for GHz frequency acoustic wave devices. Applied Physics Letters, 2022, 120, .	1.5	8
10	Edge termination in vertical GaN diodes: Electric field distribution probed by second harmonic generation. Applied Physics Letters, 2022, 120, .	1.5	4
11	GaN-on-diamond materials and device technology: A review. , 2022, , 295-331.		4
12	Thermal characteristics of superlattice castellated FETs. , 2022, , 223-230.		0
13	A macro-scale ruck and tuck mechanism for deformation in ion-irradiated polycrystalline graphite. Carbon, 2021, 173, 215-231.	5.4	27
14	Thermal stress modelling of diamond on GaN/III-Nitride membranes. Carbon, 2021, 174, 647-661.	5.4	19
15	Impact of carbon in the buffer on power switching GaN-on-Si and RF GaN-on-SiC HEMTs. Japanese Journal of Applied Physics, 2021, 60, SB0802.	0.8	26
16	Thermal Design Rules of AlGaN/GaN-Based Microwave Transistors on Diamond. IEEE Transactions on Electron Devices, 2021, 68, 1530-1536.	1.6	16
17	UV-induced change in channel conductivity in AlGaN/GaN high electron mobility transistors to measure doping. Applied Physics Letters, 2021, 118, .	1.5	3
18	Impact of Polymer Residue Level on the In-Plane Thermal Conductivity of Suspended Large-Area Graphene Sheets. ACS Applied Materials & Interfaces, 2021, 13, 17910-17919.	4.0	7
	Graphene Sheets. ACS Applied Waterials & amp, interfaces, 2021, 13, 17910-17919.		

#	Article	IF	CITATIONS
19	Noise Analysis of the Leakage Current in Time-Dependent Dielectric Breakdown in a GaN SLCFET. IEEE Transactions on Electron Devices, 2021, 68, 2220-2225.	1.6	5
20	3-D Printed Microjet Impingement Cooling for Thermal Management of Ultrahigh-Power GaN Transistors. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 748-754.	1.4	8
21	Electric field mapping of wide-bandgap semiconductor devices at a submicrometre resolution. Nature Electronics, 2021, 4, 478-485.	13.1	13
22	Scanning thermal microscopy for accurate nanoscale device thermography. Nano Today, 2021, 39, 101206.	6.2	15
23	Suppression of charge trapping in ON-state operation of AlGaN/GaN HEMTs by Si-rich passivation. Semiconductor Science and Technology, 2021, 36, 095024.	1.0	6
24	Electrical and Thermal Performance of Gaâ,,Oâ,∫–Alâ,,Oâ,∫–Diamond Super-Junction Schottky Barrier Diodes. IEEE Transactions on Electron Devices, 2021, 68, 5055-5061.	1.6	10
25	Heat Transport across Interfaces for the Optimization of Heat Sinking in Device Applications. , 2021, , .		1
26	Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling. ACS Applied Materials & Interfaces, 2021, 13, 60553-60560.	4.0	42
27	Vertical field inhomogeneity associated with threading dislocations in GaN high electron mobility transistor epitaxial stacks. Applied Physics Letters, 2021, 119, .	1.5	6
28	A systematic study of MOCVD reactor conditions and Ga memory effect on properties of thick InAl(Ga)N layers: a complete depth-resolved investigation. CrystEngComm, 2020, 22, 130-141.	1.3	2
29	Effects of interlayer interactions on the nanoindentation response of freely suspended multilayer gallium telluride. Nanotechnology, 2020, 31, 165706.	1.3	9
30	Submicrometer Resolution Hyperspectral Quantum Rod Thermal Imaging of Microelectronic Devices. ACS Applied Electronic Materials, 2020, 2, 93-102.	2.0	13
31	Self-Heating Characterization of \$eta\$ -Ga ₂ O ₃ Thin-Channel MOSFETs by Pulsed \${I}\$ –\${V}\$ and Raman Nanothermography. IEEE Transactions on Electron Devices, 2020, 67, 204-211.	1.6	18
32	Improvement of Electron Transport Property and on-Resistance in Normally-OFF Alâ,,Oâ,ƒ/AlGaN/GaN MOS-HEMTs Using Post-Etch Surface Treatment. IEEE Transactions on Electron Devices, 2020, 67, 3541-3547.	1.6	11
33	Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond. ACS Applied Materials & Interfaces, 2020, 12, 54138-54145.	4.0	38
34	Isotopically Enhanced Thermal Conductivity in Few-Layer Hexagonal Boron Nitride: Implications for Thermal Management. ACS Applied Nano Materials, 2020, 3, 12148-12156.	2.4	12
35	Low Field Vertical Charge Transport in the Channel and Buffer Layers of GaN-on-Si High Electron Mobility Transistors. IEEE Electron Device Letters, 2020, 41, 1754-1757.	2.2	19
36	Characterization of trap states in buried nitrogen-implanted <i>β</i> -Ga2O3. Applied Physics Letters, 2020, 117, .	1.5	7

#	Article	IF	CITATIONS
37	Variable range hopping mechanism and modeling of isolation leakage current in GaN-based high-electron-mobility transistors. Applied Physics Letters, 2020, 116, .	1.5	13
38	Mixed-size diamond seeding for low-thermal-barrier growth of CVD diamond onto GaN and AlN. Carbon, 2020, 167, 620-626.	5.4	40
39	Diamond Seed Size and the Impact on Chemical Vapor Deposition Diamond Thin Film Properties. ECS Journal of Solid State Science and Technology, 2020, 9, 053002.	0.9	10
40	Hexagonal Boron Nitride Single Crystal Growth from Solution with a Temperature Gradient. Chemistry of Materials, 2020, 32, 5066-5072.	3.2	21
41	Correlating Thermionic Emission with Specific Surface Reconstructions in a <100> Hydrogenated Single-Crystal Diamond. ACS Applied Materials & Interfaces, 2020, 12, 26534-26542.	4.0	4
42	Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond. Semiconductor Science and Technology, 2020, 35, 095021.	1.0	21
43	GaN-on-diamond technology platform: Bonding-free membrane manufacturing process. AIP Advances, 2020, 10, .	0.6	21
44	The Impact of Hot Electrons and Self-Heating During Hard-Switching in AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 2020, 67, 869-874.	1.6	19
45	Time Resolved Hyperspectral Quantum Rod Thermography of Microelectronic Devices: Temperature Transients in a GaN HEMT. IEEE Electron Device Letters, 2020, 41, 812-815.	2.2	6
46	Polarity dependence in Cl2-based plasma etching of GaN, AlGaN and AlN. Applied Surface Science, 2020, 521, 146297.	3.1	7
47	Current collapse and kink effect in GaN RF HEMTs: the key role of the epitaxial buffer. , 2020, , .		2
48	High Efficiency AlN/GaN HEMTs for Q-Band Applications with an Improved Thermal Dissipation. Selected Topics in Electornics and Systems, 2020, , 51-62.	0.2	1
49	Atomic layer deposited <i>α</i> -Ga ₂ O ₃ solar-blind photodetectors. Journal Physics D: Applied Physics, 2019, 52, 475101.	1.3	35
50	Thermal Transport in Superlattice Castellated Field Effect Transistors. IEEE Electron Device Letters, 2019, 40, 1374-1377.	2.2	9
51	Thick, Adherent Diamond Films on AlN with Low Thermal Barrier Resistance. ACS Applied Materials & Interfaces, 2019, 11, 40826-40834.	4.0	45
52	Passivation of Layered Gallium Telluride by Double Encapsulation with Graphene. ACS Omega, 2019, 4, 18002-18010.	1.6	15
53	Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Communications Physics, 2019, 2, .	2.0	129
54	Reliability and lifetime estimations of GaN-on-GaN vertical pn diodes. Microelectronics Reliability, 2019, 95, 48-51.	0.9	7

#	Article	IF	CITATIONS
55	Evidence of relationship between strain and In-incorporation: Growth of N-polar In-rich InAlN buffer layer by OMCVD. Journal of Applied Physics, 2019, 125, .	1.1	10
56	Impact of thinning the GaN buffer and interface layer on thermal and electrical performance in GaN-on-diamond electronic devices. Applied Physics Express, 2019, 12, 024003.	1.1	7
57	Quantifying Temperature-Dependent Substrate Loss in GaN-on-Si RF Technology. IEEE Transactions on Electron Devices, 2019, 66, 1681-1687.	1.6	22
58	Lateral charge spreading and device-to-device coupling in C-doped AlGaN/GaN-on-Si wafers. Microelectronics Reliability, 2019, 95, 81-86.	0.9	4
59	Annealing effect of surface-activated bonded diamond/Si interface. Diamond and Related Materials, 2019, 93, 187-192.	1.8	30
60	Characterization of the Interfacial Toughness in a Novel "GaN-on-Diamond―Material for High-Power RF Devices. ACS Applied Electronic Materials, 2019, 1, 354-369.	2.0	13
61	Field Plate Designs in All-GaN Cascode Heterojunction Field-Effect Transistors. IEEE Transactions on Electron Devices, 2019, 66, 1688-1693.	1.6	3
62	High Efficiency AlN/GaN HEMTs for Q-Band Applications with an Improved Thermal Dissipation. International Journal of High Speed Electronics and Systems, 2019, 28, 1940003.	0.3	3
63	Thermal analysis of semiconductor devices and materials - Why should I not trust a thermal simulation ?. , 2019, , .		6
64	Nanosecond transient thermoreflectance method for characterizing anisotropic thermal conductivity. Review of Scientific Instruments, 2019, 90, 114903.	0.6	16
65	High frequency guided mode resonances in mass-loaded, thin film gallium nitride surface acoustic wave devices. Applied Physics Letters, 2019, 115, .	1.5	10
66	Multi-channel power transistors shape up. Nature Electronics, 2019, 2, 553-554.	13.1	2
67	Raman Thermography of Peak Channel Temperature in <inline-formula> <tex-math notation="LaTeX">\$eta\$ </tex-math> </inline-formula>-Ga²O³ MOSFETs. IEEE Electron Device Letters, 2019, 40, 189-192.</tex-math </inline-formula>	2.2	54
68	Determination of the Self-Compensation Ratio of Carbon in AlGaN for HEMTs. IEEE Transactions on Electron Devices, 2018, 65, 1838-1842.	1.6	28
69	Ohmic Contact-Free Mobility Measurement in Ultra-Wide Bandgap AlGaN/AlGaN Devices. IEEE Electron Device Letters, 2018, 39, 55-58.	2.2	3
70	The 2018 GaN power electronics roadmap. Journal Physics D: Applied Physics, 2018, 51, 163001.	1.3	843
71	On the origin of dynamic Ron in commercial GaN-on-Si HEMTs. Microelectronics Reliability, 2018, 81, 306-311.	0.9	16
72	Neutron Irradiation Impact on AlGaN/GaN HEMT Switching Transients. IEEE Transactions on Nuclear Science, 2018, 65, 2862-2869.	1.2	13

#	Article	IF	CITATIONS
73	Evaluation of Pulsed <i>I</i> – <i>V</i> Analysis as Validation Tool of Nonlinear RF Models of GaN-Based HFETs. IEEE Transactions on Electron Devices, 2018, 65, 5307-5313.	1.6	12
74	The Impact of Ti/Al Contacts on AlGaN/GaN HEMT Vertical Leakage and Breakdown. IEEE Electron Device Letters, 2018, 39, 1580-1583.	2.2	7
75	Above bandgap thermoreflectance for non-invasive thermal characterization of GaN-based wafers. Applied Physics Letters, 2018, 113, .	1.5	25
76	Low Thermal Boundary Resistance Interfaces for GaN-on-Diamond Devices. ACS Applied Materials & Interfaces, 2018, 10, 24302-24309.	4.0	98
77	Non-invasive Thermal Resistance Measurement for GaN Wafer Process Control and Optimization. , 2018, , .		0
78	"Kink―in AlGaN/GaN-HEMTs: Floating Buffer Model. IEEE Transactions on Electron Devices, 2018, 65, 3746-3753.	1.6	37
79	Lateral Charge Distribution and Recovery of Dynamic <inline-formula> <tex-math notation="LaTeX">\$R_{mathrm{scriptscriptstyle ON}}\$ </tex-math </inline-formula> in AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 2018, 65, 4462-4468.	1.6	5
80	Buffer-Induced Current Collapse in GaN HEMTs on Highly Resistive Si Substrates. IEEE Electron Device Letters, 2018, 39, 1556-1559.	2.2	29
81	Pulsed Large Signal RF Performance of Field-Plated Ga ₂ O ₃ MOSFETs. IEEE Electron Device Letters, 2018, 39, 1572-1575.	2.2	55
82	Leakage mechanisms in GaN-on-GaN vertical pn diodes. Applied Physics Letters, 2018, 112, .	1.5	44
83	Lateral Charge Transport in the Carbon-Doped Buffer in AlGaN/GaN-on-Si HEMTs. IEEE Transactions on Electron Devices, 2017, 64, 977-983.	1.6	31
84	Impact of Silicon Nitride Stoichiometry on the Effectiveness of AlGaN/GaN HEMT Field Plates. IEEE Transactions on Electron Devices, 2017, 64, 1197-1202.	1.6	24
85	Hot-Electron Electroluminescence Under RF Operation in GaN-HEMTs: A Comparison Among Operational Classes. IEEE Transactions on Electron Devices, 2017, 64, 2155-2160.	1.6	6
86	Surface Zeta Potential and Diamond Seeding on Gallium Nitride Films. ACS Omega, 2017, 2, 7275-7280.	1.6	33
87	Control of Buffer-Induced Current Collapse in AlGaN/GaN HEMTs Using SiN _x Deposition. IEEE Transactions on Electron Devices, 2017, 64, 4044-4049.	1.6	28
88	Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond. Acta Materialia, 2017, 139, 215-225.	3.8	60
89	Barrier-Layer Optimization for Enhanced GaN-on-Diamond Device Cooling. ACS Applied Materials & Interfaces, 2017, 9, 34416-34422.	4.0	91
90	Negative dynamic Ron in AlGaN/GaN power devices. , 2017, , .		15

#	Article	IF	CITATIONS
91	Thermal Profiles Within the Channel of Planar Gunn Diodes Using Micro-Particle Sensors. IEEE Electron Device Letters, 2017, 38, 1325-1327.	2.2	6
92	Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs. Applied Physics Letters, 2017, 111, .	1.5	90
93	Glass-Glass Transitions by Means of an Acceptor-Donor Percolating Electric-Dipole Network. Physical Review Applied, 2017, 8, .	1.5	17
94	"Leaky Dielectric―Model for the Suppression of Dynamic \$R_{mathrm{ON}}\$ in Carbon-Doped AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 2017, 64, 2826-2834.	1.6	170
95	Damage tolerance of nuclear graphite at elevated temperatures. Nature Communications, 2017, 8, 15942.	5.8	34
96	Impact of diamond seeding on the microstructural properties and thermal stability of GaN-on-diamond wafers for high-power electronic devices. Scripta Materialia, 2017, 128, 57-60.	2.6	43
97	Morphological and electrical comparison of Ti and Ta based ohmic contacts for AlGaN/GaN-on-SiC HFETs. Microelectronics Reliability, 2017, 68, 2-4.	0.9	10
98	Transient thermoreflectance wafer mapping for process control and development: GaN-on-Diamond. , 2017, , .		1
99	Simultaneous measurement of optical and RF behavior under CW and pulsed Fully Active Harmonic Load-Pull. , 2016, , .		1
100	The effects of grain size and grain boundary characteristics on the thermal conductivity of nanocrystalline diamond. Journal of Applied Physics, 2016, 119, .	1.1	28
101	Mechanism of hot electron electroluminescence in GaN-based transistors. Journal Physics D: Applied Physics, 2016, 49, 435101.	1.3	20
102	Temperature-Dependent Thermal Resistance of GaN-on-Diamond HEMT Wafers. IEEE Electron Device Letters, 2016, 37, 621-624.	2.2	56
103	Subthreshold Mobility in AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 2016, 63, 1861-1865.	1.6	5
104	Effect of grain size of polycrystalline diamond on its heat spreading properties. Applied Physics Express, 2016, 9, 061302.	1.1	41
105	Thermal management of GaN-on-diamond high electron mobility transistors: Effect of the nanostructure in the diamond near nucleation region. , 2016, , .		10
106	Transient Thermoreflectance for Gate Temperature Assessment in Pulse Operated GaN-Based HEMTs. IEEE Electron Device Letters, 2016, 37, 1197-1200.	2.2	29
107	A Review of Raman Thermography for Electronic and Opto-Electronic Device Measurement With Submicron Spatial and Nanosecond Temporal Resolution. IEEE Transactions on Device and Materials Reliability, 2016, 16, 667-684.	1.5	85
108	(Invited) Intrinsic Reliability Assessment of 650V Rated AlGaN/GaN Based Power Devices: An Industry Perspective. ECS Transactions, 2016, 72, 65-76.	0.3	25

#	Article	IF	CITATIONS
109	Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties. Acta Materialia, 2016, 103, 141-152.	3.8	97
110	Study of hot electrons in AlGaN/GaN HEMTs under RF Class B and Class J operation using electroluminescence. Microelectronics Reliability, 2015, 55, 2493-2498.	0.9	7
111	Charge movement in a GaN-based hetero-structure field effect transistor structure with carbon doped buffer under applied substrate bias. Journal of Applied Physics, 2015, 118, .	1.1	29
112	GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity. Applied Physics Letters, 2015, 107, .	1.5	24
113	Solid immersion lenses for enhancing the optical resolution of thermal and electroluminescence mapping of GaN-on-SiC transistors. Journal of Applied Physics, 2015, 118, .	1.1	5
114	Electron microscopy of gallium nitride growth on polycrystalline diamond. Semiconductor Science and Technology, 2015, 30, 114007.	1.0	10
115	Measuring the thermal conductivity of the GaN buffer layer in AlGaN/GaN HEMTs. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1742-1745.	0.8	12
116	Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence. Applied Physics Letters, 2015, 106, .	1.5	13
117	Electric Field Reduction in C-Doped AlGaN/GaN on Si High Electron Mobility Transistors. IEEE Electron Device Letters, 2015, 36, 826-828.	2.2	61
118	Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation. Applied Physics Letters, 2015, 106, .	1.5	17
119	Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Applied Physics Letters, 2015, 106, .	1.5	126
120	Thermal conductivity of ultrathin nano-crystalline diamond films determined by Raman thermography assisted by silicon nanowires. Applied Physics Letters, 2015, 106, .	1.5	40
121	Interface State Artefact in Long Gate-Length AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 2015, 62, 2464-2469.	1.6	21
122	Low thermal resistance of a GaN-on-SiC transistor structure with improved structural properties at the interface. Journal of Crystal Growth, 2015, 428, 54-58.	0.7	29
123	Operating channel temperature in GaN HEMTs: DC versus RF accelerated life testing. Microelectronics Reliability, 2015, 55, 2505-2510.	0.9	47
124	GaN transistor reliability and instabilities. , 2014, , .		8
125	Optimizing GaN-on-Diamond Transistor Geometry for Maximum Output Power. , 2014, , .		5
126	Buffer transport mechanisms in intentionally carbon doped GaN heterojunction field effect transistors. Applied Physics Letters, 2014, 104, .	1.5	87

#	Article	IF	CITATIONS
127	Thermal conductivity of bulk GaN—Effects of oxygen, magnesium doping, and strain field compensation. Applied Physics Letters, 2014, 105, .	1.5	39
128	Probing temperature gradients within the GaN buffer layer of AlGaN/GaN high electron mobility transistors with Raman thermography. Journal of Applied Physics, 2014, 115, .	1.1	10
129	Implications of gate-edge electric field in AlGaN/GaN high electron mobility transistors during OFF-state degradation. Microelectronics Reliability, 2014, 54, 2650-2655.	0.9	11
130	Liquid crystal electrography: Electric field mapping and detection of peak electric field strength in AlGaN/GaN high electron mobility transistors. Microelectronics Reliability, 2014, 54, 921-925.	0.9	3
131	Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping. Applied Physics Letters, 2014, 104, 083513.	1.5	133
132	Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode. Journal of Applied Physics, 2014, 115, .	1.1	56
133	On wafer thermal characterization of miniature gallium arsenide microcoolers with thermal loading from DC probes. Microwave and Optical Technology Letters, 2014, 56, 2699-2700.	0.9	1
134	Contactless Thermal Boundary Resistance Measurement of GaN-on-Diamond Wafers. IEEE Electron Device Letters, 2014, 35, 1007-1009.	2.2	43
135	Diamond micro-Raman thermometers for accurate gate temperature measurements. Applied Physics Letters, 2014, 104, .	1.5	27
136	Hot-Electron-Related Degradation in InAlN/GaN High-Electron-Mobility Transistors. IEEE Transactions on Electron Devices, 2014, 61, 2793-2801.	1.6	37
137	Intentionally Carbon-Doped AlGaN/GaN HEMTs: Necessity for Vertical Leakage Paths. IEEE Electron Device Letters, 2014, 35, 327-329.	2.2	108
138	Thermal properties of AlGaN/GaN high electron mobility transistors on 4H and 6H SiC substrates. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2844-2847.	0.8	5
139	Micro-cooler enhancements by barrier interface analysis. AIP Advances, 2014, 4, 027105.	0.6	1
140	Time evolution of off-state degradation of AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2014, 104, .	1.5	20
141	<pre>\$hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}\$ Planar Gunn Diodes Operating at a Fundamental Frequency of 164 GHz. IEEE Electron Device Letters, 2013, 34, 39-41.</pre>	2.2	41
142	Impact of Intrinsic Stress in Diamond Capping Layers on the Electrical Behavior of AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 2013, 60, 3149-3156.	1.6	37
143	AlGaN/GaN field effect transistors for power electronics—Effect of finite GaN layer thickness on thermal characteristics. Applied Physics Letters, 2013, 103, .	1.5	18
144	Localization of off-stress-induced damage in AlGaN/GaN high electron mobility transistors by means of low frequency 1/f noise measurements. Applied Physics Letters, 2013, 103, .	1.5	37

#	Article	IF	CITATIONS
145	Achieving the Best Thermal Performance for GaN-on-Diamond. , 2013, , .		34
146	Electrical and Thermal Performance of AlGaN/GaN HEMTs on Diamond Substrate for RF Applications. , 2013, , .		42
147	Improved GaN-on-SiC Transistor Thermal Resistance by Systematic Nucleation Layer Growth Optimization. , 2013, , .		3
148	Analysis of strained surface layers of ZnO single crystals after irradiation with intense femtosecond laser pulses. Applied Physics Letters, 2013, 102, .	1.5	2
149	Junction temperature measurements and reliability of GaN FETs. , 2013, , .		Ο
150	Reliability of AlGaN/GaN high electron mobility transistors on low dislocation density bulk GaN substrate: Implications of surface step edges. Applied Physics Letters, 2013, 103, 193507.	1.5	21
151	Iron-induced deep-level acceptor center in GaN/AlGaN high electron mobility transistors: Energy level and cross section. Applied Physics Letters, 2013, 102, .	1.5	111
152	Improvements in thermionic cooling through engineering of the heterostructure interface using Monte Carlo simulations. Journal of Applied Physics, 2013, 114, .	1.1	3
153	GaN Power Transistors with Integrated Thermal Management. ECS Transactions, 2013, 58, 279-286.	0.3	7
154	Influence of microstructural defects on the thermal conductivity of Ga <scp>N</scp> : A molecular dynamics study. Physica Status Solidi (B): Basic Research, 2013, 250, 1541-1545.	0.7	13
155	Impact ionisation electroluminescence in planar GaAs-based heterostructure Gunn diodes: Spatial distribution and impact of doping non-uniformities. Journal of Applied Physics, 2013, 113, 124505.	1.1	12
156	Reliability Assessment of a New Power Electronics Packaging Material: Silver Diamond Composite. Journal of Microelectronics and Electronic Packaging, 2013, 10, 54-58.	0.8	1
157	On the link between electroluminescence, gate current leakage, and surface defects in AlGaN/GaN high electron mobility transistors upon off-state stress. Applied Physics Letters, 2012, 101, .	1.5	54
158	Non-Arrhenius Degradation of AlGaN/GaN HEMTs Grown on Bulk GaN Substrates. IEEE Electron Device Letters, 2012, 33, 1126-1128.	2.2	13
159	Reduction of Impact Ionization in GaAs-Based Planar Gunn Diodes by Anode Contact Design. IEEE Transactions on Electron Devices, 2012, 59, 654-660.	1.6	14
160	Early stage degradation of InAlN/GaN HEMTs during electrical stress. , 2012, , .		1
161	Origin of kink effect in AlGaN/GaN high electron mobility transistors: Yellow luminescence and Fe doping. Applied Physics Letters, 2012, 101,	1.5	15
162	Growth mechanisms and defect structures of B12As2 epilayers grown on 4H-SiC substrates. Journal of Crystal Growth, 2012, 352, 3-8.	0.7	6

#	Article	lF	CITATIONS
163	Effects of gate shaping and consequent process changes on AlGaN/GaN HEMT reliability. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2646-2652.	0.8	9
164	Buffer Design to Minimize Current Collapse in GaN/AlGaN HFETs. IEEE Transactions on Electron Devices, 2012, 59, 3327-3333.	1.6	271
165	Dynamic Transconductance Dispersion Characterization of Channel Hot-Carrier Stressed 0.25- \$muhbox{m}\$ AlGaN/GaN HEMTs. IEEE Electron Device Letters, 2012, 33, 1550-1552.	2.2	18
166	Thermal Properties of AlGaN/GaN HFETs on Bulk GaN Substrates. IEEE Electron Device Letters, 2012, 33, 366-368.	2.2	48
167	Improved thermal management for GaN power electronics: Silver diamond composite packages. Microelectronics Reliability, 2012, 52, 3022-3025.	0.9	18
168	Optical investigation of degradation mechanisms in AlGaN/GaN high electron mobility transistors: Generation of non-radiative recombination centers. Applied Physics Letters, 2012, 100, .	1.5	31
169	On the discrimination between bulk and surface traps in AlGaN/GaN HEMTs from trapping characteristics. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 386-389.	0.8	9
170	The role of surface barrier oxidation on AlGaN/GaN HEMTs reliability. Microelectronics Reliability, 2012, 52, 29-32.	0.9	19
171	Evidence for impact ionisation in AlGaN/GaN HEMTs with InGaN back-barrier. Electronics Letters, 2011, 47, 405.	0.5	32
172	Influence of threading dislocation density on early degradation in AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2011, 99, 223501.	1.5	77
173	Time-dependent thermal crosstalk in multifinger AlGaN/GaN HEMTs and implications on their electrical performance. Solid-State Electronics, 2011, 57, 14-18.	0.8	26
174	Field-effect saccharide sensing using AlGaN/GaN heterostructures and boronic acid based chemical receptors. Sensors and Actuators B: Chemical, 2011, 160, 1078-1081.	4.0	8
175	InN Thin Film Lattice Dynamics by Grazing Incidence Inelastic X-Ray Scattering. Physical Review Letters, 2011, 106, 205501.	2.9	41
176	AlGaN/GaN HEMT device reliability and degradation evolution: Importance of diffusion processes. Microelectronics Reliability, 2011, 51, 195-200.	0.9	67
177	Semiconducting icosahedral boron arsenide crystal growth for neutron detection. Journal of Crystal Growth, 2011, 318, 553-557.	0.7	13
178	Microâ€Raman analysis of GaAs Schottky barrier solar cell. Journal of Raman Spectroscopy, 2011, 42, 422-428.	1.2	3
179	Micro-Raman spectroscopy as a voltage probe in AlGaN/GaN heterostructure devices: Determination of buffer resistances. Solid-State Electronics, 2011, 55, 5-7.	0.8	1
180	Silver diamond composite as a new packaging solution: A thermo-mechanical stability study. , 2011, , .		2

#	Article	IF	CITATIONS
181	Solution Growth and Characterization of Icosahedral Boron Arsenide (B12As2). Materials Research Society Symposia Proceedings, 2011, 1307, 1.	0.1	0
182	Elimination of Degenerate Epitaxy in the Growth of High Quality B12As2 Single Crystalline Epitaxial Films. Materials Research Society Symposia Proceedings, 2011, 1307, 1.	0.1	3
183	Raman spectroscopic studies of vibrational relaxation and non oincidence effect in substituted benzaldehyde binary mixtures. Journal of Raman Spectroscopy, 2010, 41, 320-324.	1.2	1
184	Sublimation crystal growth of yttrium nitride. Journal of Crystal Growth, 2010, 312, 2896-2903.	0.7	18
185	Demonstration of boron arsenide heterojunctions: A radiation hard wide band gap semiconductor device. Applied Physics Letters, 2010, 96, .	1.5	14
186	Thermal conductivity and Seebeck coefficients of icosahedral boron arsenide films on silicon carbide. Journal of Applied Physics, 2010, 108, 084906.	1.1	13
187	Importance of impurity diffusion for early stage degradation in AlGaN/GaN high electron mobility transistors upon electrical stress. Applied Physics Letters, 2010, 97, 023503.	1.5	43
188	Mechanism for Improved Quality B12As2 Epitaxial Films on (0001) 4H-SiC Substrates by Tilting toward [1-100] Direction. Materials Research Society Symposia Proceedings, 2010, 1246, 1.	0.1	4
189	Electronic excitations in B12As2and their temperature dependence by vacuum ultraviolet ellipsometry. Journal of Physics Condensed Matter, 2010, 22, 395801.	0.7	4
190	Benchmarking of Thermal Boundary Resistance in AlGaN/GaN HEMTs on SiC Substrates: Implications of the Nucleation Layer Microstructure. IEEE Electron Device Letters, 2010, 31, 1395-1397.	2.2	150
191	Temperature analysis of AlGaN/GaN based devices using photoluminescence spectroscopy: Challenges and comparison to Raman thermography. Journal of Applied Physics, 2010, 107, .	1.1	26
192	Energy band structure and optical response function of icosahedral <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mtext>B</mml:mtext><mml:mrow><mml:mn>12</mml:mn><!--<br-->A spectroscopic ellipsometry and first-principles calculational study. Physical Review B, 2010, 81</mml:mrow></mml:msub></mml:mrow></mml:math 	nni:mrov	v>??mml:msu
193	Integrated Optical and Electrical Analysis: Identifying Location and Properties of Traps in AlGaN/GaN HEMTs During Electrical Stress. IEEE Electron Device Letters, 2010, 31, 662-664.	2.2	120
194	Identification of electronic traps in AlGaN/GaN HEMTs using UV light-assisted trapping analysis. , 2010, , .		8
195	Temperature assessment of AlGaN/GaN HEMTs: A comparative study by Raman, electrical and IR thermography. , 2010, , .		23
196	Electric field distribution in AlGaN/GaN high electron mobility transistors investigated by electroluminescence. Applied Physics Letters, 2010, 97, 033502.	1.5	12
197	Converse piezoelectric strain in undoped and Fe-doped AlGaN/GaN heterostructure field effect transistors studied by Raman scattering. Semiconductor Science and Technology, 2010, 25, 085004.	1.0	12
198	Origins of Twinned Microstructures in B12As2 Epilayers Grown on (0001) 6H-SiC and Their Influence on Physical Properties. Materials Research Society Symposia Proceedings, 2009, 1164, 1.	0.1	0

#	Article	IF	CITATIONS
199	Growth of Boron Carbide Crystals from a Copper Flux. Materials Research Society Symposia Proceedings, 2009, 1164, 1.	0.1	0
200	Microâ€Raman scattering spectroscopy study of Liâ€doped and undoped ZnO needle crystals. Journal of Raman Spectroscopy, 2009, 40, 556-561.	1.2	57
201	Solvent dependent study of carbonyl vibrations of 3â€phenoxybenzaldehyde and 4â€ethoxybenzaldehyde by Raman spectroscopy and <i>ab initio</i> calculations. Journal of Raman Spectroscopy, 2009, 40, 921-935.	1.2	11
202	Impact of the field induced polarization space-charge on the characteristics of AlGaN/GaN HEMT: Self-consistent simulation study. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S1007-S1011.	0.8	2
203	Laser lift-off transfer of AlGaN/GaN HEMTs from sapphire onto Si: A thermal perspective. Solid-State Electronics, 2009, 53, 526-529.	0.8	16
204	Simultaneous measurement of temperature and thermal stress in AlGaN/GaN high electron mobility transistors using Raman scattering spectroscopy. Journal of Applied Physics, 2009, 106, .	1.1	58
205	Substrate-directed formation of calcium carbonate fibres. Journal of Materials Chemistry, 2009, 19, 387-398.	6.7	31
206	Reducing Thermal Resistance of AlGaN/GaN Electronic Devices Using Novel Nucleation Layers. IEEE Electron Device Letters, 2009, 30, 103-106.	2.2	59
207	Direct optical measurement of hotâ€phonons in active AlGaN/GaN devices. Physica Status Solidi (B): Basic Research, 2008, 245, 910-912.	0.7	7
208	Channel Temperature Determination in High-Power AlGaN/GaN HFETs Using Electrical Methods and Raman Spectroscopy. IEEE Transactions on Electron Devices, 2008, 55, 478-482.	1.6	109
209	Micro-Raman/Infrared Temperature Monitoring of Gunn Diodes. IEEE Transactions on Electron Devices, 2008, 55, 1090-1093.	1.6	13
210	Fabrication of GaN nanowalls and nanowires using surface charge lithography. Materials Letters, 2008, 62, 4576-4578.	1.3	19
211	Current collapse in AlGaN/GaN transistors studied using time-resolved Raman thermography. Applied Physics Letters, 2008, 93, 203510.	1.5	20
212	Dynamic Operational Stress Measurement of MEMS Using Time-Resolved Raman Spectroscopy. Journal of Microelectromechanical Systems, 2008, 17, 1315-1321.	1.7	16
213	Nanosecond Timescale Thermal Dynamics of AlGaN/GaN Electronic Devices. IEEE Electron Device Letters, 2008, 29, 416-418.	2.2	38
214	Raman-IR micro-thermography tool for reliability and failure analysis of electronic devices. , 2008, , .		4
215	Raman spectroscopy of (K,Na)NbO3 and (K,Na)1â^'xLixNbO3. Applied Physics Letters, 2008, 93, . 	1.5	97
216	Characterization and Growth Mechanism of B12As2 Epitaxial Layers Grown on (1-100) 15R-SiC. Materials Research Society Symposia Proceedings, 2008, 1069, 1.	0.1	0

#	Article	IF	CITATIONS
217	Single-crystalline B12As2 on m-plane (11Â⁻00)â€^15R-SiC. Applied Physics Letters, 2008, 92, .	1.5	13
218	Defect structures in B12As2 epitaxial layers grown on (0001) 6H-SiC. Journal of Applied Physics, 2008, 103, 123508.	1.1	11
219	An investigation of phonon decay in B12As2 by Raman scattering spectroscopy. Journal of Applied Physics, 2008, 103, .	1.1	2
220	Lattice dynamics of wurtzite and rocksalt AlN under high pressure: Effect of compression on the crystal anisotropy of wurtzite-type semiconductors. Physical Review B, 2008, 77, .	1.1	61
221	Photoluminescence and vibrational properties of nanostructured ZnSe templates. Semiconductor Science and Technology, 2007, 22, 1115-1121.	1.0	17
222	Evidence for phonon-plasmon interaction inInNby Raman spectroscopy. Physical Review B, 2007, 75, .	1.1	24
223	Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires. Applied Physics Letters, 2007, 90, 133107.	1.5	67
224	A study of the phase diagram of (K,Na,Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy. Journal of Applied Physics, 2007, 102, .	1.1	175
225	Time-Resolved Temperature Measurement of AlGaN/GaN Electronic Devices Using Micro-Raman Spectroscopy. IEEE Electron Device Letters, 2007, 28, 86-89.	2.2	114
226	Vibrational and optical properties of GaN nanowires synthesized by Ni-assisted catalytic growth. Nanotechnology, 2007, 18, 445704.	1.3	25
227	Thermal Properties and Reliability of GaN Microelectronics: Sub-Micron Spatial and Nanosecond Time Resolution Thermography. , 2007, , .		14
228	Optical characterization of hierarchical ZnO structures grown with a simplified vapour transport method. Nanotechnology, 2007, 18, 215705.	1.3	19
229	On-line tools for microscopic and macroscopic monitoring of microwave processing. Physica B: Condensed Matter, 2007, 398, 191-195.	1.3	12
230	Time-resolved nanosecond sub-micron resolution thermal analysis of high-power AlGaN/GaN HFETs. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2014-2018.	0.8	2
231	Effect of pressure on the Raman scattering of wurtzite AlN. Physica Status Solidi (B): Basic Research, 2007, 244, 42-47.	0.7	11
232	High-Resolution Raman Temperature Measurements in GaAs p-HEMT Multifinger Devices. IEEE Transactions on Electron Devices, 2007, 54, 1838-1842.	1.6	23
233	Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices. IEEE Transactions on Electron Devices, 2007, 54, 3152-3158.	1.6	231
234	Piezoelectric strain in AlGaNâ^•GaN heterostructure field-effect transistors under bias. Applied Physics Letters, 2006, 88, 103502.	1.5	88

#	Article	IF	CITATIONS
235	Resonant Raman characterization of InAlGaN/GaN heterostructures. Physica Status Solidi (B): Basic Research, 2006, 243, 1674-1678.	0.7	6
236	Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design. IEEE Transactions on Electron Devices, 2006, 53, 2696-2702.	1.6	64
237	Integrated micro-Raman/infrared thermography probe for monitoring of self-heating in AlGaN/GaN transistor structures. IEEE Transactions on Electron Devices, 2006, 53, 2438-2447.	1.6	212
238	Three-dimensional thermal analysis of a flip-chip mounted AlGaN/GaN HFET using confocal micro-Raman spectroscopy. IEEE Transactions on Electron Devices, 2006, 53, 2658-2661.	1.6	20
239	Phase selectivity of microwave heating evidenced by Raman spectroscopy. Journal of Applied Physics, 2006, 99, 113505.	1.1	16
240	Integrated Raman - IR Thermography on AlGaN/GaN Transistors. , 2006, , .		14
241	Insights into electroluminescent emission from AlGaNâ^•GaN field effect transistors using micro-Raman thermal analysis. Applied Physics Letters, 2006, 88, 023507.	1.5	30
242	Crystal growth of B12As2 on SiC substrate by CVD method. Journal of Crystal Growth, 2005, 273, 431-438.	0.7	26
243	Free nucleation of aluminum nitride single crystals in HPBN crucible by sublimation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 117, 99-104.	1.7	7
244	High spatial resolution micro-Raman temperature measurements of nitride devices (FETs and light) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 50
245	Resonant Raman spectroscopy on InN. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 763-767.	0.8	14
246	Flip Chip Mounting for Improved Thermal Management of AlGaN/GaN HFETs. Materials Research Society Symposia Proceedings, 2005, 892, 352.	0.1	3
247	Phonon lifetimes and phonon decay in InN. Applied Physics Letters, 2005, 86, 223501.	1.5	75
248	Gallium nitride based ballistic electron acceleration negativedifferentialconductivity diodes for potential THZ applications. , 2005, , .		0
249	Thermal mapping of defects in AlGaNâ^GaN heterostructure field-effect transistors using micro-Raman spectroscopy. Applied Physics Letters, 2005, 87, 103508.	1.5	34
250	Nitrogen-rich indium nitride. Journal of Applied Physics, 2004, 95, 6124-6128.	1.1	68
251	GaN nanoindentation: A micro-Raman spectroscopy study of local strain fields. Journal of Applied Physics, 2004, 96, 2853-2856.	1.1	62
252	Raman spectroscopy of B12As2 under high pressure. Journal of Applied Physics, 2004, 96, 910-912.	1.1	17

#	Article	IF	CITATIONS
253	Sublimation Growth of Aluminum Nitride-Silicon Carbide Alloy Crystals on SiC (0001) Substrates. Materials Research Society Symposia Proceedings, 2004, 831, 347.	0.1	3
254	Crystal growth and properties of scandium nitride. Journal of Materials Science: Materials in Electronics, 2004, 15, 555-559.	1.1	44
255	A Raman spectroscopy study of InN. Journal of Crystal Growth, 2004, 269, 59-65.	0.7	38
256	Behavior of phonons in short period GaN-AlN superlattices. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2706-2710.	0.8	7
257	Raman scattering in InN films and nanostructures. Superlattices and Microstructures, 2004, 36, 581-589.	1.4	6
258	Bulk AlN crystal growth by direct heating of the source using microwaves. Journal of Crystal Growth, 2004, 262, 168-174.	0.7	13
259	Micro-Raman Temperature Measurements for Electric Field Assessment in Active AlGaN–GaN HFETs. IEEE Electron Device Letters, 2004, 25, 456-458.	2.2	79
260	Phonon deformation potentials of the E2(high) phonon mode of AlxGa1â^'xN. Applied Physics Letters, 2004, 85, 2217-2219.	1.5	11
261	The Durability of Various Crucible Materials for Aluminum Nitride Crystal Growth by Sublimation. MRS Internet Journal of Nitride Semiconductor Research, 2004, 9, 1.	1.0	15
262	Nitride-Based Light Emitting Diodes and Laser Diodes: Optical Properties and Applications. Springer Series in Solid-state Sciences, 2004, , 289-320.	0.3	0
263	Free-standing GaN grown on epitaxial lateral overgrown GaN substrates. Journal of Crystal Growth, 2003, 255, 277-281.	0.7	14
264	High Temperature Annealing of AlGaN: Stress and Composition Changes. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 568-571.	0.8	2
265	Effect of Impurities on Raman and Photoluminescence Spectra of AlN Bulk Crystals. Materials Research Society Symposia Proceedings, 2003, 798, 454.	0.1	7
266	Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy. Applied Physics Letters, 2003, 82, 124-126.	1.5	163
267	Growth of Rhombohedral B12P2 Thin Films on 6H-SiC(0001) By Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2003, 799, 63.	0.1	1
268	High-temperature annealing of AlGaN: Stress, structural, and compositional changes. Journal of Applied Physics, 2003, 94, 6366-6371.	1.1	6
269	Investigation of Thin Film Growth of B ₁₂ As ₂ by Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2003, 764, 1.	0.1	4
270	Optical investigation of micrometer and nanometer-size individual GaN pillars fabricated by reactive ion etching. Journal of Applied Physics, 2002, 91, 6520.	1.1	29

#	Article	IF	CITATIONS
271	Raman mapping, photoluminescence investigations, and finite element analysis of epitaxial lateral overgrown GaN on silicon substrates. Applied Physics Letters, 2002, 80, 2275-2277.	1.5	27
272	Raman scattering in GaN pillar arrays. Journal of Applied Physics, 2002, 91, 2866-2869.	1.1	18
273	Deformation potentials of the E2(high) phonon mode of AlN. Applied Physics Letters, 2002, 81, 1426-1428.	1.5	67
274	Optical pump-and-probe measurement of the thermal conductivity of nitride thin films. Journal of Applied Physics, 2002, 92, 3820-3824.	1.1	87
275	Determination of the Mode Grüneisen Parameter of AlN using different Fits on Experimental High Pressure Data. High Pressure Research, 2002, 22, 37-41.	0.4	1
276	Self-Heating Effects in Multi-Finger AlGaN/GaN HFETs. Materials Research Society Symposia Proceedings, 2002, 743, L9.7.1.	0.1	1
277	Raman Mapping and Finite Element Analysis of Epitaxial Lateral Overgrown GaN on Sapphire Substrates. Materials Research Society Symposia Proceedings, 2002, 743, L3.12.1.	0.1	Ο
278	Micro-Raman Spectroscopy: Self-Heating Effects In Deep UV Light Emitting Diodes. Materials Research Society Symposia Proceedings, 2002, 743, L7.8.1.	0.1	3
279	Self-heating effects at high pump currents in deep ultraviolet light-emitting diodes at 324 nm. Applied Physics Letters, 2002, 81, 3491-3493.	1.5	124
280	Raman characterization and stress analysis of AlN grown on SiC by sublimation. Journal of Applied Physics, 2002, 92, 5183-5188.	1.1	51
281	Raman mapping investigations and finite element analysis of double epitaxial lateral overgrown GaN on sapphire substrates. Applied Physics Letters, 2002, 81, 2370-2372.	1.5	10
282	Raman scattering, photoluminescence, and X-ray diffraction studies of GaN layers grown on misoriented sapphire substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 15-18.	1.7	4
283	Bulk AlN crystal growth: self-seeding and seeding on 6H-SiC substrates. Journal of Crystal Growth, 2002, 246, 187-193.	0.7	73
284	Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy. IEEE Electron Device Letters, 2002, 23, 7-9.	2.2	295
285	Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AllnGaN laser diodes. Applied Physics Letters, 2001, 79, 4076-4078.	1.5	20
286	Raman scattering studies on single-crystalline bulk AlN under high pressures. Applied Physics Letters, 2001, 78, 724-726.	1.5	127
287	Raman scattering and photoluminescence studies on Si/SiO2 superlattices. Journal of Applied Physics, 2001, 89, 7903-7907.	1.1	27
288	Direct signature of strained GaN quantum dots by Raman scattering. Applied Physics Letters, 2001, 79, 686-688.	1.5	20

#	Article	IF	CITATIONS
289	Self-Heating Effects in High-Power AlGaN/GaN HFETs. Materials Research Society Symposia Proceedings, 2001, 693, 271.	0.1	1
290	New Technique for Sublimation Growth of AlN Single Crystals. MRS Internet Journal of Nitride Semiconductor Research, 2001, 6, 1.	1.0	17
291	Angular dispersion of polar phonons in a hexagonal GaN–AlN superlattice. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 27-29.	1.7	46
292	Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control. Surface and Interface Analysis, 2001, 31, 987-999.	0.8	327
293	On Phonon Confinement Effects and Free Carrier Concentration in GaN Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 228, 195-198.	0.7	2
294	Inelastic Light Scattering by Phonons in Hexagonal GaN-AlN Nanostructures. Physica Status Solidi A, 2001, 183, 157-161.	1.7	29
295	Micro-Raman Study of Wurtzite AlN Layers Grown on Si(111). Physica Status Solidi A, 2001, 188, 511-514.	1.7	14
296	Stress at the Coalescence Boundary of Epitaxial Lateral Overgrown GaN. Physica Status Solidi A, 2001, 188, 747-750.	1.7	4
297	Characterization of Aluminum Nitride Crystals Grown by Sublimation. Physica Status Solidi A, 2001, 188, 769-774.	1.7	5
298	Raman scattering studies on single-crystalline bulk AlN: temperature and pressure dependence of the AlN phonon modes. Journal of Crystal Growth, 2001, 231, 391-396.	0.7	51
299	Influence of buffer layer and 6H-SiC substrate polarity on the nucleation of AlN grown by the sublimation sandwich technique. Journal of Crystal Growth, 2001, 233, 177-186.	0.7	31
300	Resonant Raman scattering on self-assembled GaN quantum dots. Applied Physics Letters, 2001, 78, 987-989.	1.5	24
301	Finite element analysis of epitaxial lateral overgrown GaN: Voids at the coalescence boundary. Applied Physics Letters, 2001, 79, 4127-4129.	1.5	16
302	Raman mapping of epitaxial lateral overgrown GaN: Stress at the coalescence boundary. Journal of Applied Physics, 2001, 90, 3656-3658.	1.1	40
303	Photoluminescence spectroscopy on annealed molecular beam epitaxy grown GaN. Journal of Applied Physics, 2001, 89, 1070-1074.	1.1	19
304	Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control. , 2001, 31, 987.		15
305	Phonon Lifetimes and Phonon Decay Channels in Single Crystalline Bulk Aluminum Nitride. Materials Research Society Symposia Proceedings, 2000, 639, 771.	0.1	0
306	Resonant Raman scattering in (Al,Ga)N/GaN quantum well structures. Thin Solid Films, 2000, 364, 156-160.	0.8	6

#	Article	IF	CITATIONS
307	Amorphous GaN Grown by Room Temperature Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2000, 39, 4753-4754.	0.8	27
308	Investigation of polarization-pinning mechanism in deep-line-etched vertical-cavity surface-emitting lasers. Applied Physics Letters, 2000, 76, 400-402.	1.5	20
309	High-pressure high-temperature annealing of ion-implanted GaN films monitored by visible and ultraviolet micro-Raman scattering. Journal of Applied Physics, 2000, 87, 2736-2741.	1.1	33
310	Temperature Dependence of the Phonons of Bulk AlN. Japanese Journal of Applied Physics, 2000, 39, L710-L712.	0.8	63
311	Phonon lifetimes in bulk AlN and their temperature dependence. Applied Physics Letters, 2000, 77, 1958-1960.	1.5	86
312	Focused Ion Beam Etching of Nanometer-Size GaN/AlGaN Device Structures and their Optical Characterization by Micro-Photoluminescence/Raman Mapping. MRS Internet Journal of Nitride Semiconductor Research, 2000, 5, 950-956.	1.0	2
313	The Use of Micro-Raman Spectroscopy to Monitor High-Pressure High Temperature Annealing of Ion-Implanted GaN Films. MRS Internet Journal of Nitride Semiconductor Research, 2000, 5, 740-746.	1.0	0
314	A study of annealed GaN grown by molecular beam epitaxy using photoluminescence spectroscopy MRS Internet Journal of Nitride Semiconductor Research, 2000, 5, 761-767.	1.0	0
315	High-temperature processing of GaN: The influence of the annealing ambient on strain in GaN. Applied Physics Letters, 1999, 75, 2097-2099.	1.5	40
316	Degradation of AlGaN during high-temperature annealing monitored by ultraviolet Raman scattering. Applied Physics Letters, 1999, 74, 549-551.	1.5	23
317	Deep Ultraviolet Raman Scattering for the Monitoring of High-Temperature Processing of AlGaN. Physica Status Solidi (B): Basic Research, 1999, 215, 105-108.	0.7	1
318	Raman Scattering in GaN/AlN Quantum Dot Structures. Physica Status Solidi (B): Basic Research, 1999, 216, 457-460.	0.7	12
319	Multi Phonon Resonant Raman Scattering in GaN/AlxGa1—xN Quantum Wells. Physica Status Solidi (B): Basic Research, 1999, 216, 799-802.	0.7	6
320	The Growth of Gallium Nitride Films Produced by Reactive Sputtering at Low Temperature. Physica Status Solidi A, 1999, 176, 319-322.	1.7	5
321	Nano-Fabrication of GaN Pillars Using Focused Ion Beam Etching. Physica Status Solidi A, 1999, 176, 355-358.	1.7	24
322	The Influence of the Annealing Ambient on Strain and Doping in GaN during High-Temperature Processing. Physica Status Solidi A, 1999, 176, 759-762.	1.7	5
323	Thermal Stability of GaN Investigated by Raman Scattering. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 653-658.	1.0	2
324	The Use of Micro-Raman Spectroscopy to Monitor High-Pressure High-Temperature Annealing of Ion-Implanted GaN Films. Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	1

#	Article	IF	CITATIONS
325	A Study of Annealed GaN Grown by Molecular Beam Epitaxy Using Photoluminescence Spectroscopy Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	0
326	Focused Ion Beam Etching of Nanometer-Size GaN/AlGaN Device Structures and their Optical Characterization by Micro-Photoluminescence/Raman Mapping. Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	0
327	Raman Scattering in GaN/AlN Quantum Dot Structures. , 1999, 216, 457.		1
328	Nano-Fabrication of GaN Pillars Using Focused Ion Beam Etching. , 1999, 176, 355.		1
329	Focused Ion Beam Etching of GaN. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 769-774.	1.0	2
330	Gain characteristics of InGaN/GaN quantum well diode lasers. Applied Physics Letters, 1998, 72, 1418-1420.	1.5	62
331	Thermal stability of GaN investigated by Raman scattering. Applied Physics Letters, 1998, 73, 960-962.	1.5	78
332	Near-field optical study of InGaN/GaN epitaxial layers and quantum wells. Applied Physics Letters, 1998, 72, 2645-2647.	1.5	58
333	Piezo-optics of InP in the visible-ultraviolet range. Physical Review B, 1998, 57, 4432-4442.	1.1	9
334	Thermal Stability of GaN Investigated by Raman Scattering. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	0
335	Focused ION Beam Etching of GaN. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	1
336	Gain spectroscopy on InGaN/GaN quantum well diodes. Applied Physics Letters, 1997, 70, 2580-2582.	1.5	60
337	First-order resonant Raman scattering under an electric field. Physical Review B, 1996, 54, 11492-11504.	1.1	3
338	Timeâ€resolved pumpâ€probe experiments with subwavelength lateral resolution. Applied Physics Letters, 1996, 69, 2465-2467.	1.5	69
339	Recombination dynamics in InGaN quantum wells. Applied Physics Letters, 1996, 69, 4194-4196.	1.5	112
340	Microscopic structure of the GaAs(001)-(6×6) surface derived from scanning tunneling microscopy. Physical Review B, 1995, 51, 13880-13882.	1.1	29
341	Hydrogen adsorption on the GaAs(001)-(2×4) surface: A scanning-tunneling-microscopy study. Physical Review B, 1995, 52, 16337-16340.	1.1	12
342	Electric-field-induced Raman scattering in GaAs: Franz-Keldysh oscillations. Physical Review B, 1995, 51, 7353-7356.	1.1	12

#	Article	IF	CITATIONS
343	SnTeâ€doping of GaAs grown by atomic layer molecular beam epitaxy. Journal of Applied Physics, 1995, 77, 4339-4342.	1.1	2
344	Influence of hydrogen adsorption on the optical properties of the GaAs(100)-c(4×4) surface. Physical Review B, 1995, 51, 10923-10928.	1.1	18
345	Influence of the interface composition of InAs/AISb superlattices on their optical and structural properties. Journal of Applied Physics, 1995, 77, 811-820.	1.1	72
346	Doping dependence of theE1andE1+Δ1critical points in highly dopedn- andp-type GaAs: Importance of surface band bending and depletion. Physical Review B, 1994, 49, 16569-16574.	1.1	20
347	Hydrogen adsorption on GaAs(110): A study of the surface optical properties. Physical Review B, 1994, 50, 8609-8615.	1.1	19
348	Thermal management and device failure assessment of high-power AlGaN/GaN HFETs. , 0, , .		2
349	GaN devices for microwave applications [FET/HEMT]. , 0, , .		7
350	Reliability optimization for wide bandgap devices: Recent developments in high-spatial resolution thermal imaging of GaN devices. , 0, , .		3