
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8650646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A landscapeâ€scale framework to identify refugiaÂfrom multiple stressors. Conservation Biology, 2022, 36, .	4.7	12
2	The human–grass–fire cycle: how people and invasives coâ€occur to drive fire regimes. Frontiers in Ecology and the Environment, 2022, 20, 117-126.	4.0	9
3	Fireâ€driven vegetation type conversion in Southern California. Ecological Applications, 2022, 32, e2626.	3.8	10
4	An expanded framework for wildland–urban interfaces and their management. Frontiers in Ecology and the Environment, 2022, 20, 516-523.	4.0	7
5	Multiple-Scale Relationships between Vegetation, the Wildland–Urban Interface, and Structure Loss to Wildfire in California. Fire, 2021, 4, 12.	2.8	14
6	Ignitions explain more than temperature or precipitation in driving Santa Ana wind fires. Science Advances, 2021, 7, .	10.3	11
7	Fitting the solutions to the problems in managing extreme wildfire in California. Environmental Research Communications, 2021, 3, 081005.	2.3	8
8	Large California wildfires: 2020 fires in historical context. Fire Ecology, 2021, 17, .	3.0	77
9	Wildfire recovery as a "hot moment―for creating fire-adapted communities. International Journal of Disaster Risk Reduction, 2020, 42, 101354.	3.9	37
10	Fire and biodiversity in the Anthropocene. Science, 2020, 370, .	12.6	240
11	Evidence-based mapping of the wildland-urban interface to better identify human communities threatened by wildfires. Environmental Research Letters, 2020, 15, 094069.	5.2	38
12	Mapping fire regime ecoregions in California. International Journal of Wildland Fire, 2020, 29, 595.	2.4	14
13	Ignition Sources. , 2020, , 662-676.		0
14	Extent and drivers of vegetation type conversion in Southern California chaparral. Ecosphere, 2019, 10, e02796.	2.2	25
15	Factors Associated with Structure Loss in the 2013–2018 California Wildfires. Fire, 2019, 2, 49.	2.8	45
16	Twenty-first century California, USA, wildfires: fuel-dominated vs. wind-dominated fires. Fire Ecology, 2019, 15, .	3.0	93
17	The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Global Environmental Change, 2019, 56, 41-55.	7.8	74
18	Drivers of chaparral type conversion to herbaceous vegetation in coastal Southern California. Diversity and Distributions, 2019, 25, 90-101.	4.1	34

#	Article	IF	CITATIONS
19	Chaparral Landscape Conversion in Southern California. Springer Series on Environmental Management, 2018, , 323-346.	0.3	25
20	Rapid growth of the US wildland-urban interface raises wildfire risk. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3314-3319.	7.1	628
21	Historical patterns of wildfire ignition sources in California ecosystems. International Journal of Wildland Fire, 2018, 27, 781.	2.4	83
22	Ignition Sources. , 2018, , 1-17.		9
23	Prioritizing conserved areas threatened by wildfire and fragmentation for monitoring and management. PLoS ONE, 2018, 13, e0200203.	2.5	10
24	Mapping future fire probability under climate change: Does vegetation matter?. PLoS ONE, 2018, 13, e0201680.	2.5	41
25	Trends and drivers of fire activity vary across California aridland ecosystems. Journal of Arid Environments, 2017, 144, 110-122.	2.4	21
26	Different historical fire–climate patterns in California. International Journal of Wildland Fire, 2017, 26, 253.	2.4	48
27	Human presence diminishes the importance of climate in driving fire activity across the United States. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13750-13755.	7.1	137
28	Big data for forecasting the impacts of global change on plant communities. Global Ecology and Biogeography, 2017, 26, 6-17.	5.8	83
29	Can private land conservation reduce wildfire risk to homes? A case study in San Diego County, California, USA. Landscape and Urban Planning, 2017, 157, 161-169.	7.5	15
30	The importance of building construction materials relative to other factors affecting structure survival during wildfire. International Journal of Disaster Risk Reduction, 2017, 21, 140-147.	3.9	57
31	Setting priorities for private land conservation in fire-prone landscapes: Are fire risk reduction and biodiversity conservation competing or compatible objectives?. Ecology and Society, 2016, 21, .	2.3	18
32	Climate Change and Future Fire Regimes: Examples from California. Geosciences (Switzerland), 2016, 6, 37.	2.2	107
33	California forests show early indications of both range shifts and local persistence under climate change. Global Ecology and Biogeography, 2016, 25, 164-175.	5.8	21
34	Averaged 30 year climate change projections mask opportunities for species establishment. Ecography, 2016, 39, 844-845.	4.5	22
35	Factors related to building loss due to wildfires in the conterminous United States. Ecological Applications, 2016, 26, 2323-2338.	3.8	46
36	Shrinking windows of opportunity for oak seedling establishment in southern California mountains. Ecosphere, 2016, 7, e01573.	2.2	26

#	Article	IF	CITATIONS
37	Historical reconstructions of California wildfires vary by data source. International Journal of Wildland Fire, 2016, 25, 1221.	2.4	25
38	High and dry: high elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes. Landscape Ecology, 2016, 31, 1063-1075.	4.2	43
39	The relative impacts of vegetation, topography and spatial arrangement on building loss to wildfires in case studies of California and Colorado. Landscape Ecology, 2016, 31, 415-430.	4.2	45
40	Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3725-3734.	7.1	276
41	Different fire–climate relationships on forested and non-forested landscapes in the Sierra Nevada ecoregion. International Journal of Wildland Fire, 2015, 24, 27.	2.4	22
42	Disturbance and climate microrefugia mediate tree range shifts during climate change. Landscape Ecology, 2015, 30, 1039-1053.	4.2	52
43	High-Severity Fire in Chaparral. , 2015, , 177-209.		6
44	Place and process in conservation planning for climate change: a reply to Keppel and Wardell-Johnson. Trends in Ecology and Evolution, 2015, 30, 234-235.	8.7	3
45	Predicting the impact of fire on a vulnerable multi-species community using a dynamic vegetation model. Ecological Modelling, 2015, 301, 27-39.	2.5	17
46	Location, timing and extent of wildfire vary by cause of ignition. International Journal of Wildland Fire, 2015, 24, 37.	2.4	121
47	Learning to coexist with wildfire. Nature, 2014, 515, 58-66.	27.8	739
48	Linking spatially explicit species distribution and population models to plan for the persistence of plant species under global change. Environmental Conservation, 2014, 41, 97-109.	1.3	35
49	Bioclimatic velocity: the pace of species exposure to climate change. Diversity and Distributions, 2014, 20, 169-180.	4.1	60
50	The role of defensible space for residential structure protection during wildfires. International Journal of Wildland Fire, 2014, 23, 1165.	2.4	118
51	Effects of climate change and urban development on the distribution and conservation of vegetation in a Mediterranean type ecosystem. International Journal of Geographical Information Science, 2014, 28, 1561-1589.	4.8	22
52	Fire Management, Managed Relocation, and Land Conservation Options for Long‣ived Obligate Seeding Plants under Global Changes in Climate, Urbanization, and Fire Regime. Conservation Biology, 2014, 28, 1057-1067.	4.7	27
53	Fine-grain modeling of species' response to climate change: holdouts, stepping-stones, and microrefugia. Trends in Ecology and Evolution, 2014, 29, 390-397.	8.7	272
54	Influence of Fuels, Weather and the Built Environment on the Exposure of Property to Wildfire. PLoS ONE, 2014, 9, e111414.	2.5	31

2.2

57

#	Article	IF	CITATIONS
55	Wildfire ignition-distribution modelling: a comparative study in the Huron–Manistee National Forest, Michigan, USA. International Journal of Wildland Fire, 2013, 22, 174.	2.4	137
56	Does functional type vulnerability to multiple threats depend on spatial context in <scp>M</scp> editerraneanâ€climate regions?. Diversity and Distributions, 2013, 19, 1263-1274.	4.1	20
57	Modeling plant species distributions under future climates: how fine scale do climate projections need to be?. Global Change Biology, 2013, 19, 473-483.	9.5	289
58	Uncertainty in assessing the impacts of global change with coupled dynamic species distribution and population models. Global Change Biology, 2013, 19, 858-869.	9.5	53
59	The 2003 and 2007 Wildfires in Southern California. , 2013, , 42-52.		7
60	Land Use Planning and Wildfire: Development Policies Influence Future Probability of Housing Loss. PLoS ONE, 2013, 8, e71708.	2.5	89
61	The impact of antecedent fire area on burned area in southern California coastal ecosystems. Journal of Environmental Management, 2012, 113, 301-307.	7.8	42
62	Evaluation of assisted colonization strategies under global change for a rare, fireâ€dependent plant. Global Change Biology, 2012, 18, 936-947.	9.5	36
63	Housing Arrangement and Location Determine the Likelihood of Housing Loss Due to Wildfire. PLoS ONE, 2012, 7, e33954.	2.5	131
64	The Roles of Dispersal, Fecundity, and Predation in the Population Persistence of an Oak (Quercus) Tj ETQqO 0 0	rgBT/Ove 2.5	rlock 10 Tf 5(
65	Comparing the role of fuel breaks across southern California national forests. Forest Ecology and Management, 2011, 261, 2038-2048.	3.2	73
66	Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest, California. International Journal of Wildland Fire, 2011, 20, 764.	2.4	49
67	Using stochastic simulation to evaluate competing risks of wildfires and fuels management on an isolated forest carnivore. Landscape Ecology, 2011, 26, 1491-1504.	4.2	72
68	Forecasts of habitat loss and fragmentation due to urban growth are sensitive to source of input data. Journal of Environmental Management, 2011, 92, 1882-1893.	7.8	60
69	Effects of ignition location models on the burn patterns of simulated wildfires. Environmental Modelling and Software, 2011, 26, 583-592.	4.5	37
70	Simulating landscape-scale effects of fuels treatments in the Sierra Nevada, California, USA. International Journal of Wildland Fire, 2011, 20, 364.	2.4	77
71	Wilderness Fire Management in a Changing Environment. Ecological Studies, 2011, , 269-294.	1.2	9

⁷² Species traits affect the performance of species distribution models for plants in southern California. Journal of Vegetation Science, 2010, 21, 177-189.

#	Article	IF	CITATIONS
73	Assessing housing growth when census boundaries change. International Journal of Geographical Information Science, 2009, 23, 859-876.	4.8	16
74	Simulating dynamic and mixed-severity fire regimes: A process-based fire extension for LANDIS-II. Ecological Modelling, 2009, 220, 3380-3393.	2.5	107
75	Differences in spatial predictions among species distribution modeling methods vary with species traits and environmental predictors. Ecography, 2009, 32, 907-918.	4.5	113
76	Conservation Threats Due to Humanâ€Caused Increases in Fire Frequency in Mediterraneanâ€Climate Ecosystems. Conservation Biology, 2009, 23, 758-769.	4.7	200
77	Detection rates of the MODIS active fire product in the United States. Remote Sensing of Environment, 2008, 112, 2656-2664.	11.0	161
78	Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 2008, 17, 602.	2.4	212
79	HUMAN INFLUENCE ON CALIFORNIA FIRE REGIMES. , 2007, 17, 1388-1402.		515
80	Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands. Environmental Modelling and Software, 2007, 22, 1641-1653.	4.5	21
81	Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landscape Ecology, 2007, 22, 431-445.	4.2	89
82	SIMULATING THE EFFECTS OF FREQUENT FIRE ON SOUTHERN CALIFORNIA COASTAL SHRUBLANDS. , 2006, 16, 1744-1756.		80
83	VIABILITY OF BELL'S SAGE SPARROW (AMPHISPIZA BELLI SSP. BELLI): ALTERED FIRE REGIMES. , 2005, 15, 521-53	1.	32
84	Altered Fire Regimes Affect Landscape Patterns of Plant Succession in the Foothills and Mountains of Southern California. Ecosystems, 2005, 8, 885-898.	3.4	48
85	Using a cellular automaton model to forecast the effects of urban growth on habitat pattern in southern California. Ecological Complexity, 2005, 2, 185-203.	2.9	108
86	Spatial aggregation effects on the simulation of landscape pattern and ecological processes in southern California plant communities. Ecological Modelling, 2004, 180, 21-40.	2.5	29
87	Simulating the effects of different fire regimes on plant functional groups in Southern California. Ecological Modelling, 2001, 142, 261-283.	2.5	80
88	Human- and beaver-induced wetland changes in the Chickahominy River watershed from 1953 to 1994. Wetlands, 2001, 21, 342-353.	1.5	38