Chiara Arrigoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/865058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A microfluidic 3D inÂvitro model for specificity of breast cancer metastasis to bone. Biomaterials, 2014, 35, 2454-2461.	11.4	440
2	Human inÂvitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach. Biomaterials, 2016, 76, 157-172.	11.4	72
3	Bioprinting and Organ-on-Chip Applications Towards Personalized Medicine for Bone Diseases. Stem Cell Reviews and Reports, 2017, 13, 407-417.	5.6	51
4	Sound-induced morphogenesis of multicellular systems for rapid orchestration of vascular networks. Biofabrication, 2021, 13, 015004.	7.1	40
5	In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone. International Journal of Molecular Sciences, 2016, 17, 1405.	4.1	37
6	Oncogenic hijacking of a developmental transcription factor evokes vulnerability toward oxidative stress in Ewing sarcoma. Nature Communications, 2020, 11, 2423.	12.8	35
7	Organs-on-a-chip as model systems for multifactorial musculoskeletal diseases. Current Opinion in Biotechnology, 2020, 63, 79-88.	6.6	33
8	Advanced Microfluidic Models of Cancer and Immune Cell Extravasation: A Systematic Review of the Literature. Frontiers in Bioengineering and Biotechnology, 2020, 8, 907.	4.1	31
9	Tackling muscle fibrosis: From molecular mechanisms to next generation engineered models to predict drug delivery. Advanced Drug Delivery Reviews, 2018, 129, 64-77.	13.7	29
10	The effect of sodium ascorbate on the mechanical properties of hyaluronan-based vascular constructs. Biomaterials, 2006, 27, 623-630.	11.4	28
11	Rotating versus perfusion bioreactor for the culture of engineered vascular constructs based on hyaluronic acid. Biotechnology and Bioengineering, 2008, 100, 988-997.	3.3	26
12	Rational Design of Prevascularized Large 3D Tissue Constructs Using Computational Simulations and Biofabrication of Geometrically Controlled Microvessels. Advanced Healthcare Materials, 2016, 5, 1617-1626.	7.6	26
13	Direct but not indirect co-culture with osteogenically differentiated human bone marrow stromal cells increases RANKL/OPG ratio in human breast cancer cells generating bone metastases. Molecular Cancer, 2014, 13, 238.	19.2	24
14	Engineered miniaturized models of musculoskeletal diseases. Drug Discovery Today, 2016, 21, 1429-1436.	6.4	24
15	A microphysiological early metastatic niche on a chip reveals how heterotypic cell interactions and inhibition of integrin subunit β ₃ impact breast cancer cell extravasation. Lab on A Chip, 2021, 21, 1061-1072.	6.0	21
16	Vascular Tissue Engineering. Cell Transplantation, 2006, 15, 119-125.	2.5	20
17	Umbilical Cord MSCs and Their Secretome in the Therapy of Arthritic Diseases: A Research and Industrial Perspective. Cells, 2020, 9, 1343.	4.1	18
18	Engineering complex muscle-tissue interfaces through microfabrication. Biofabrication, 2019, 11, 032004.	7.1	17

CHIARA ARRIGONI

#	Article	IF	CITATIONS
19	Industrialization of a perfusion bioreactor: Prime example of a nonâ€straightforward process. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 405-415.	2.7	14
20	Characterization of articular chondrocytes isolated from 211 osteoarthritic patients. Cell and Tissue Banking, 2014, 15, 59-66.	1.1	10
21	Creep-resistant dextran-based polyurethane foam as a candidate scaffold for bone tissue engineering: Synthesis, chemico-physical characterization, and <i>in vitro</i> and <i>in vivo</i> biocompatibility. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 729-740.	3.4	8
22	The effect of polyurethane scaffold surface treatments on the adhesion of chondrocytes subjected to interstitial perfusion culture. Tissue Engineering and Regenerative Medicine, 2016, 13, 364-374.	3.7	8
23	Catch-and-Release of Target Cells Using Aptamer-Conjugated Electroactive Zwitterionic Oligopeptide SAM. Scientific Reports, 2017, 7, 43375.	3.3	8
24	Engineering the early bone metastatic niche through human vascularized immuno bone minitissues. Biofabrication, 2021, 13, 035036.	7.1	7
25	Radiobiological Studies of Microvascular Damage through In Vitro Models: A Methodological Perspective. Cancers, 2021, 13, 1182.	3.7	6
26	Improving cell seeding efficiency through modification of fiber geometry in 3D printed scaffolds. Biofabrication, 2021, 13, 035025.	7.1	5
27	Herringbone-like hydrodynamic structures in microchannels: A CFD model to evaluate the enhancement of surface binding. Medical Engineering and Physics, 2017, 48, 62-67.	1.7	1
28	3D Biofabricated In Vitro Models of Vascularized and Mineralized Bone Tissues. Methods in Molecular Biology, 2022, 2373, 283-296.	0.9	0