
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8650455/publications.pdf Version: 2024-02-01

Incurs I

#	Article	IF	CITATIONS
1	Remedial Injected-Harmonic-Current Operation of Redundant Flux-Switching Permanent-Magnet Motor Drives. IEEE Transactions on Industrial Electronics, 2013, 60, 151-159.	5.2	127
2	Design and Analysis of a New Fault-Tolerant Permanent-Magnet Vernier Machine for Electric Vehicles. IEEE Transactions on Magnetics, 2012, 48, 4176-4179.	1.2	122
3	Multiobjective Optimization of a Double-Side Linear Vernier PM Motor Using Response Surface Method and Differential Evolution. IEEE Transactions on Industrial Electronics, 2020, 67, 80-90.	5.2	88
4	Remedial Brushless AC Operation of Fault-Tolerant Doubly Salient Permanent-Magnet Motor Drives. IEEE Transactions on Industrial Electronics, 2010, 57, 2134-2141.	5.2	85
5	Quantitative Comparison of Integral and Fractional Slot Permanent Magnet Vernier Motors. IEEE Transactions on Energy Conversion, 2015, 30, 1483-1495.	3.7	67
6	Sensorless Control of a Linear Permanent-Magnet Motor Based on an Improved Disturbance Observer. IEEE Transactions on Industrial Electronics, 2018, 65, 9291-9300.	5.2	65
7	Stator-Flux-Oriented Fault-Tolerant Control of Flux-Switching Permanent-Magnet Motors. IEEE Transactions on Magnetics, 2011, 47, 4191-4194.	1.2	64
8	Minimization of Cogging Force in a Novel Linear Permanent-Magnet Motor for Artificial Hearts. IEEE Transactions on Magnetics, 2013, 49, 3901-3904.	1.2	59
9	Design and Analysis of a Halbach Magnetized Magnetic Screw for Artificial Heart. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	52
10	Star and Delta Hybrid Connection of a FSCW PM Machine for Low Space Harmonics. IEEE Transactions on Industrial Electronics, 2018, 65, 9266-9279.	5.2	44
11	Design Optimization and Test of a Radially Magnetized Magnetic Screw With Discretized PMs. IEEE Transactions on Industrial Electronics, 2018, 65, 7536-7547.	5.2	42
12	Design and Analysis of a New Modular Linear Flux-Reversal Permanent-Magnet Motor. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.1	40
13	Design and Analysis of a New Linear Hybrid Excited Flux Reversal Motor With Inset Permanent Magnets. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	39
14	High-Performance Fault Tolerant Halbach Permanent Magnet Vernier Machines for Safety-Critical Applications. IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	39
15	A Generalized Equivalent Magnetic Network Modeling Method for Vehicular Dual-Permanent-Magnet Vernier Machines. IEEE Transactions on Energy Conversion, 2019, 34, 1950-1962.	3.7	39
16	Design and Analysis of New Vernier Permanent-Magnet Machine With Improved Torque Capability. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	37
17	Design and Analysis of a New Fault-Tolerant Linear Permanent-Magnet Motor for Maglev Transportation Applications. IEEE Transactions on Applied Superconductivity, 2012, 22, 5200204-5200204.	1.1	36
18	Unity Power Factor Fault-Tolerant Control of Linear Permanent-Magnet Vernier Motor Fed by a Floating Bridge Multilevel Inverter With Switch Fault. IEEE Transactions on Industrial Electronics, 2018, 65, 9113-9123.	5.2	33

#	Article	IF	CITATIONS
19	Design to Reduce Rotor Losses in Fault-Tolerant Permanent-Magnet Machines. IEEE Transactions on Industrial Electronics, 2018, 65, 8476-8487.	5.2	32
20	Influence of magnet shape on the cogging torque of a surface-mounted permanent magnet motor. Chinese Journal of Electrical Engineering, 2019, 5, 40-50.	2.3	32
21	Analysis and Reduction of Electromagnetic Vibration in Fractional-Slot Concentrated-Windings PM Machines. IEEE Transactions on Industrial Electronics, 2022, 69, 3357-3367.	5.2	30
22	Improvement of Power Factor in a Double-Side Linear Flux-Modulation Permanent-Magnet Motor for Long Stroke Applications. IEEE Transactions on Industrial Electronics, 2019, 66, 3391-3400.	5.2	29
23	A Novel Dual-Permanent-Magnet-Excited Machine With Non-Uniformly Distributed Permanent-Magnets and Flux Modulation Poles on the Stator. IEEE Transactions on Vehicular Technology, 2020, 69, 7104-7115.	3.9	28
24	Parametric Equivalent Magnetic Network Modeling Approach for Multiobjective Optimization of PM Machine. IEEE Transactions on Industrial Electronics, 2021, 68, 6619-6629.	5.2	27
25	Modified Flux Linkage Observer for Sensorless Direct Thrust Force Control of Linear Vernier Permanent Magnet Motor. IEEE Transactions on Power Electronics, 2019, 34, 7800-7811.	5.4	25
26	Analysis of PM Eddy Current Loss in Four-Phase Fault-Tolerant Flux-Switching Permanent-Magnet Machines by Air-Gap Magnetic Field Modulation Theory. IEEE Transactions on Industrial Electronics, 2020, 67, 5369-5378.	5.2	23
27	A Novel Linear Permanent-Magnet Vernier Machine With Improved Force Performance. IEEE Transactions on Magnetics, 2015, 51, 1-10.	1.2	22
28	Permanent Magnet Shape Using Analytical Feedback Function for Torque Improvement. IEEE Transactions on Industrial Electronics, 2018, 65, 4619-4630.	5.2	22
29	Investigation of Slot–Pole Combination of Dual-Permanent-Magnet-Excited Vernier Machines by Using Air-Gap Field Modulation Theory. IEEE Transactions on Transportation Electrification, 2019, 5, 1360-1369.	5.3	22
30	Analysis of New Modular Linear Flux Reversal Permanent Magnet Motors. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	21
31	Effect of circumferential segmentation of permanent magnets on rotor loss in fractionalâ€slot concentratedâ€winding machines. IET Electric Power Applications, 2017, 11, 1151-1159.	1.1	20
32	Investigation of Bread-Loaf Magnet on Vibration Performance in FSCW PMSM Considering Force Modulation Effect. IEEE Transactions on Transportation Electrification, 2021, 7, 1379-1389.	5.3	20
33	Sleeve design of permanent-magnet machine for low rotor losses. Chinese Journal of Electrical Engineering, 2020, 6, 86-96.	2.3	20
34	New High Force Density Tubular Permanent-Magnet Motor. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.1	19
35	Simplified Three-Vector-Based Model Predictive Thrust Force Control With Cascaded Optimization Process for a Double-Side Linear Vernier Permanent Magnet Motor. IEEE Transactions on Power Electronics, 2020, 35, 10681-10689.	5.4	19
36	Torque Improvement in Dual <i>M</i> -Phase Permanent-Magnet Machines by Phase Shift for Electric Ship Applications. IEEE Transactions on Vehicular Technology, 2020, 69, 9601-9612.	3.9	19

#	Article	IF	CITATIONS
37	Design and Optimization of a Fault Tolerant Modular Permanent Magnet Assisted Synchronous Reluctance Motor With Torque Ripple Minimization. IEEE Transactions on Industrial Electronics, 2021, 68, 8519-8530.	5.2	18
38	Torque Calculation of Stator Modular PMa-SynRM With Asymmetric Design for Electric Vehicles. IEEE Transactions on Transportation Electrification, 2021, 7, 202-213.	5.3	17
39	Effect of Phase Shift on Inductance and Short-Circuit Current in Dual Three-Phase 48-Slot/22-Pole Permanent-Magnet Machines. IEEE Transactions on Industrial Electronics, 2022, 69, 1135-1145.	5.2	17
40	High reliability linear drive device for artificial hearts. Journal of Applied Physics, 2012, 111, 07E729.	1.1	16
41	Design and Analysis of a New Linear Wound-Field Flux Reversal Machine Based on Magnetic Gear Effect. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	14
42	Sensorless Control of Linear Vernier Permanent-Magnet Motor Based on Improved Mover Flux Observer. IEEE Transactions on Power Electronics, 2020, 35, 3869-3877.	5.4	14
43	Remedial phase-angle control of a five-phase fault-tolerant permanent-magnet vernier machine with short-circuit fault. CES Transactions on Electrical Machines and Systems, 2017, 1, 83-88.	2.7	13
44	Improvement of Reluctance Torque in Fault-Tolerant Permanent-Magnet Machines With Fractional-Slot Concentrated-Windings. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	13
45	Vibration Investigation of Spoke-Type PM Machine With Asymmetric Rotor Considering Modulation Effect of Stator Teeth. IEEE Transactions on Industrial Electronics, 2021, 68, 9092-9103.	5.2	13
46	Simplified Three-Vector-Based Model Predictive Direct Power Control for Dual Three-Phase PMSC. IEEE Transactions on Energy Conversion, 2022, 37, 1145-1155.	3.7	13
47	Design and Analysis of a New Fault-Tolerant Magnetic-Geared Permanent-Magnet Motor. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.1	12
48	A Generalized Mesh-Based Thermal Network Model for SPM Machines Combining Coupled Winding Solution. IEEE Transactions on Industrial Electronics, 2021, 68, 116-127.	5.2	12
49	Modulated Vibration Reduction Design for Integral-Slot Interior Permanent Magnet Synchronous Machines. IEEE Transactions on Industrial Electronics, 2022, 69, 12249-12260.	5.2	12
50	Self-Adapted Model Predictive Current Control for Five-Phase Open-End Winding PMSM With Reduced Switching Loss. IEEE Transactions on Power Electronics, 2022, 37, 11007-11018.	5.4	12
51	Design and Analysis of Coaxial Magnetic Gears Considering Rotor Losses. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	11
52	A Novel Double-Stator Tubular Vernier Permanent-Magnet Motor With High Thrust Density and Low Cogging Force. IEEE Transactions on Magnetics, 2015, 51, 1-7.	1.2	11
53	Design and Manufacture of a Linear Actuator Based on Magnetic Screw Transmission. IEEE Transactions on Industrial Electronics, 2021, 68, 1095-1107.	5.2	11
54	A new modular flux-switching permanent-magnet machine using fault-tolerant teeth. , 2010, , .		9

#	Article	IF	CITATIONS
55	Vibration prediction in faultâ€ŧolerant fluxâ€switching permanentâ€magnet machine under healthy and faulty conditions. IET Electric Power Applications, 2017, 11, 19-28.	1.1	9
56	Design of a New Fault-Tolerant Linear Permanent-Magnet Vernier Machine. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2020, 1, 172-181.	3.0	8
57	Effects of Eccentric Magnet on High-Frequency Vibroacoustic Performance in Integral-Slot SPM Machines. IEEE Transactions on Energy Conversion, 2021, 36, 2393-2403.	3.7	8
58	Phase Shift Technique to Improve Torque of Synchronous Reluctance Machines With Dual <i>M</i> -Phase Windings. IEEE Transactions on Industrial Electronics, 2022, 69, 5-17.	5.2	8
59	Direct Torque Control for Dual Three-Phase Permanent Magnet Motor With Improved Torque and Flux. IEEE Transactions on Energy Conversion, 2022, 37, 2385-2397.	3.7	8
60	A new tubular fault-tolerant permanent-magnet motor for active vehicle suspension. , 2012, , .		7
61	HYBRID EXCITED VERNIER MACHINES WITH ALL EXCITATION SOURCES ON THE STATOR FOR ELECTRIC VEHICLES. Progress in Electromagnetics Research M, 2016, 46, 113-123.	0.5	7
62	Electromagnetic Performance of Double-Stator Flux-Modulation Permanent-Magnet Motor. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	7
63	Design and Analysis of Dual-Stator PM Vernier Linear Machine With PMs Surface-Mounted on the Mover. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	7
64	Influence of Armature Windings Pole Numbers on Performances of Linear Permanent-Magnet Vernier Machines. IEEE Transactions on Transportation Electrification, 2019, 5, 385-394.	5.3	7
65	A Novel Parallel Hybrid Excitation Field Modulated Machine With Efficient Utilization of Multiworking Harmonics. IEEE Transactions on Industrial Electronics, 2022, 69, 1177-1188.	5.2	7
66	Improved Model Predictive Current Control for Linear Vernier Permanent-Magnet Motor With Efficient Voltage Vectors Selection. IEEE Transactions on Industrial Electronics, 2023, 70, 2833-2842.	5.2	6
67	Design and analysis of a field modulated magnetic screw for artificial heart. AIP Advances, 2017, 7, 056717.	0.6	5
68	Rotor Design to Improve Torque Capability in Synchronous Reluctance Motor. , 2019, , .		5
69	Duty-Ratio-Based Direct Torque Control With Enhanced Harmonic Current Suppression for Dual-Three-Phase Permanent Magnet Motor. IEEE Transactions on Power Electronics, 2022, 37, 11098-11108.	5.4	5
70	New direct torque control of five-phase fault-tolerant flux-switching permanent-magnet motor drives. , 2016, , .		4
71	Design and analysis of a novel modular six-phase linear permanent-magnet vernier machine. , 2017, , .		4
72	Lowâ€noise design of faultâ€tolerant fluxâ€switching permanentâ€magnet machines. IET Electric Power Applications, 2018, 12, 747-756.	1.1	4

#	Article	IF	CITATIONS
73	Mechanism Investigation of Ring Type Winding in Linear Permanent Magnet Vernier Machine for Improving Force Density. IEEE Transactions on Vehicular Technology, 2020, 69, 2588-2597.	3.9	4
74	Quantitative Analysis on Maximum Efficiency Point and Specific High-Efficiency Region of Permanent-Magnet Machines. IEEE Transactions on Industrial Electronics, 2022, 69, 1333-1345.	5.2	4
75	Analysis of Half Halbach Array Configurations in Linear Permanent-Magnet Vernier Machine. Journal of Magnetics, 2017, 22, 414-422.	0.2	4
76	Meshless Generalized Finite Difference Method to Analyze Electromagnetic Performance of SPM Machines With Eccentric Rotor Shape. IEEE Transactions on Industrial Electronics, 2022, 69, 12055-12065.	5.2	4
77	Vibration Reduction Design of Consequent Pole PM Machine by Symmetrizing Local and Global Magnetic Field. IEEE Transactions on Industrial Electronics, 2023, 70, 243-254.	5.2	4
78	Design to reduce electromagnetic vibration in integral-slot SPM machine considering force modulation effect. Science China Technological Sciences, 2022, 65, 1867-1877.	2.0	4
79	Minimum copper loss fault-tolerant control of redundant flux-switching permanent-magnet motors. , 2011, , .		3
80	Thrust ripple reduction of linear flux-switching PM motor using harmonic injected current. , 2013, , .		3
81	Design and Analysis of Linear Fault-Tolerant Permanent-Magnet Vernier Machines. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	3
82	A Novel Flux Focusing Magnetically Geared Machine with Reduced Eddy Current Loss. Energies, 2016, 9, 904.	1.6	3
83	Analysis and Control of Double-Stator Tubular Permanent-Magnet Motor With Series Magnetic Circuit. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	3
84	Robustness Improvement of Two-Vector-Based Model Predictive Current Control for Permanent Magnet Synchronous Motor. , 2019, , .		3
85	Design and development of a magnetic lead screw propulsion device for general transport system. IET Electric Power Applications, 2020, 14, 492-499.	1.1	3
86	Design and analysis of a new fractional-slot-windings axial-flux permanent-magnet machine. , 2011, , .		2
87	A primary-permanent-magnet vernier linear machine with improved fault-tolerant capability. , 2013, , .		2
88	Optimal design and remedial control of fault-tolerant permanent magnet motors. International Journal of Vehicle Autonomous Systems, 2013, 11, 126.	0.2	2
89	Thermal prediction of a fault tolerant permanent magnet vernier machine. , 2015, , .		2
90	Comparison of coaxial magnetic gears with parallel and series magnetic circuits. , 2016, , .		2

#	Article	IF	CITATIONS
91	Direct thrust force control of open-end winding linear vernier permanent-magnet motor with reduced force ripple. , 2017, , .		2
92	Design and analysis of a new partitioned stator fluxâ€modulation motor for direct drive applications. IET Electric Power Applications, 2020, 14, 184-191.	1.1	2
93	Fault-tolerant control of modular linear flux-switching permanent-magnet motor. , 2013, , .		1
94	Eddy current loss analysis of open-slot fault-tolerant permanent-magnet machines based on conformal mapping method. AIP Advances, 2017, 7, 056646.	0.6	1
95	Comparative study of partitioned stator flux-modulation motors with different permanent magnet arrays. International Journal of Applied Electromagnetics and Mechanics, 2021, , 1-19.	0.3	1
96	Position Estimation Error Compensation for Sensorless Control of SPMSM Based on Space Vector Signal Injection. IEEE Transactions on Energy Conversion, 2022, 37, 1324-1334.	3.7	1
97	Design and Analysis of a High Torque Density Hybrid Permanent Magnet Excited Vernier Machine. Energies, 2022, 15, 1723.	1.6	1
98	Optimal control of permanent-magnet motor for pulsatile axial blood pump applications. , 2011, , .		0
99	Multi-phase fault-tolerant switched-flux permanent magnet motors having odd rotor pole number. , 2013, , .		0
100	Fault-tolerant primary-permanent magnet linear machine employing modular secondary. , 2014, , .		0
101	Decoupling control of five-phase tflpm actuator with high-performance current regulator. , 2014, , .		Ο
102	Comparison of fault-tolerant operations for two fault-tolerant flux-switching permanent-magnet motor drivers. , 2016, , .		0
103	A New Partitioned Stator Machine with Halbach Permanent Magnet Array. , 2016, , .		Ο
104	Harmonic impact on rotor losses in fault-tolerant interior permanent-magnet machines. , 2016, , .		0
105	A new fault-tolerance motor with decoupled reluctance channel and PM channel. , 2017, , .		Ο
106	Robustness optimization of fault-tolerant permanent magnet vernier machine under multimode operation. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2021, , .	0.3	0
107	A New Partitioned Stator Hybrid Excitation Machine With Internal Magnetic Ring. IEEE Transactions on Magnetics, 2022, 58, 1-6.	1.2	0
108	Remedial Direct Torque Control for Dual Three-Phase Permanent-Magnet Motor With Harmonic Torque Suppression. IEEE Transactions on Power Electronics, 2022, 37, 11085-11097.	5.4	0