Eiichiro Fukusaki

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8650398/eiichiro-fukusaki-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

290
papers

8,203
citations

52
h-index

75
g-index

307
ext. papers

9,420
ext. citations

4
avg, IF
L-index

#	Paper	IF	Citations
2 90	Application of gas chromatography-mass spectrometry-based metabolomics in food science and technology <i>Journal of Bioscience and Bioengineering</i> , 2022 ,	3.3	4
289	Metabolomics-Driven Identification of the Rate-Limiting Steps in 1-Propanol Production <i>Frontiers in Microbiology</i> , 2022 , 13, 871624	5.7	0
288	History of hair analysis by mass spectrometry imaging. <i>Journal of Bioscience and Bioengineering</i> , 2021 ,	3.3	1
287	Metabolomic investigation of differences in components and taste between hon-mirin and mirin-like-seasoning. <i>Journal of Bioscience and Bioengineering</i> , 2021 , 132, 599-605	3.3	О
286	Characterization of five Indonesian mangoes using gas chromatography-mass spectrometry-based metabolic profiling and sensory evaluation. <i>Journal of Bioscience and Bioengineering</i> , 2021 , 132, 613-620	3.3	1
285	Stable isotope and chemical inhibition analyses suggested the existence of a non-mevalonate-like pathway in the yeast Yarrowia lipolytica. <i>Scientific Reports</i> , 2021 , 11, 5598	4.9	О
284	Evaluation of change in metabolome caused by comprehensive diabetes treatment: A prospective observational study of diabetes inpatients with gas chromatography/mass spectrometry-based non-target metabolomic analysis. <i>Journal of Diabetes Investigation</i> , 2021 ,	3.9	1
283	H-NMR metabolomics-based classification of Japanese sake and comparative metabolome analysis by gas chromatography-mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2021 , 131, 557-56	43.3	O
282	Investigation of the effects of actinorhodin biosynthetic gene cluster expression and a rpoB point mutation on the metabolome of Streptomyces coelicolor M1146. <i>Journal of Bioscience and Bioengineering</i> , 2021 , 131, 525-536	3.3	3
281	Mass Spectrometric Enzyme Histochemistry for Choline Acetyltransferase Reveals Acetylcholine Synthesis in Rodent Brain and Spinal Cord. <i>ACS Chemical Neuroscience</i> , 2021 , 12, 2079-2087	5.7	2
280	Gas chromatography/mass spectrometry-based metabolite profiling of coffee beans obtained from different altitudes and origins with various postharvest processing. <i>Metabolomics</i> , 2021 , 17, 69	4.7	2
279	Minimization of adverse effects of blank matrices from various apparatuses in the downsizing of gas chromatography-mass spectrometry-based metabolomics. <i>Journal of Bioscience and Bioengineering</i> , 2021 , 132, 102-107	3.3	0
278	Fake metabolomics chromatogram generation for facilitating deep learning of peak-picking neural networks. <i>Journal of Bioscience and Bioengineering</i> , 2021 , 131, 207-212	3.3	O
277	Shrimp count size: GC/MS-based metabolomics approach and quantitative descriptive analysis (QDA) reveal the importance of size in white leg shrimp (Litopenaeus vannamei). <i>Metabolomics</i> , 2021 , 17, 19	4.7	2
276	Reduction of the extra-column band dispersion by a slow transport and splitting of a sample band in isocratic reversed-phase liquid chromatography. <i>Journal of Chromatography A</i> , 2021 , 1641, 461996	4.5	
275	Profiling of volatile compounds in Japanese sake stored in sherry casks using solid phase microextraction/gas chromatography/mass spectrometry analysis. <i>Journal of Bioscience and Bioengineering</i> , 2021 , 132, 108-112	3.3	1
274	Gas chromatography-mass spectrometry-based metabolite profiling and sensory profile of Indonesian fermented food (tempe) from various legumes. <i>Journal of Bioscience and Bioengineering</i> , 2021 , 132, 487-495	3.3	1

(2020-2021)

273	chromatography/mass spectrometry based metabolomics. <i>Journal of Bioscience and Bioengineering</i> , 2021 , 132, 258-264	3.3	
272	Comparative metabolomics and sensory evaluation of pineapple (Ananas comosus) reveal the importance of ripening stage compared to cultivar. <i>Journal of Bioscience and Bioengineering</i> , 2021 , 132, 592-598	3.3	1
271	Saliva and Plasma Reflect Metabolism Altered by Diabetes and Periodontitis. <i>Frontiers in Molecular Biosciences</i> , 2021 , 8, 742002	5.6	1
270	Metabolomics Analysis Reveals Global Metabolic Changes in the Evolved Strain with Improved Growth and 1-Butanol Production in Minimal Medium. <i>Metabolites</i> , 2020 , 10,	5.6	1
269	Plasma metabolites associated with arterial stiffness in patients with type 2 diabetes. <i>Cardiovascular Diabetology</i> , 2020 , 19, 75	8.7	9
268	Poly-Eglutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: A metabolomic analysis. <i>Journal of Bioscience and Bioengineering</i> , 2020 , 130, 272-282	3.3	9
267	Dataset of Cavendish banana transcriptome in response to chitosan coating application. <i>Data in Brief</i> , 2020 , 29, 105337	1.2	3
266	Fast enantiomeric separation of amino acids using liquid chromatography/mass spectrometry on a chiral crown ether stationary phase. <i>Journal of Bioscience and Bioengineering</i> , 2020 , 130, 437-442	3.3	12
265	Serine racemase enhances growth of colorectal cancer by producing pyruvate from serine. <i>Nature Metabolism</i> , 2020 , 2, 81-96	14.6	8
264	Identification of Key Metabolites in Poly-EGlutamic Acid Production by Tuning EPGA Synthetase Expression. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 38	5.8	4
263	Identification of Plasma Inositol and Indoxyl Sulfate as Novel Biomarker Candidates for Atherosclerosis in Patients with Type 2 DiabetesFindings from Metabolome Analysis Using GC/MS. <i>Journal of Atherosclerosis and Thrombosis</i> , 2020 , 27, 1053-1067	4	10
262	Profiling of taste-related compounds during the fermentation of Japanese sake brewed with or without a traditional seed mash (kimoto). <i>Journal of Bioscience and Bioengineering</i> , 2020 , 130, 63-70	3.3	4
261	The depletion of ubiquilin in Drosophila melanogaster disturbs neurochemical regulation to drive activity and behavioral deficits. <i>Scientific Reports</i> , 2020 , 10, 5689	4.9	3
2 60	Component Profiling of Soy-Sauce-Like Seasoning Produced from Different Raw Materials. <i>Metabolites</i> , 2020 , 10,	5.6	6
259	GC/MS-based metabolic profiling for the evaluation of solid state fermentation to improve quality of Arabica coffee beans. <i>Metabolomics</i> , 2020 , 16, 57	4.7	10
258	Metabolic Visualization Reveals the Distinct Distribution of Sugars and Amino Acids in Rice. <i>Mass Spectrometry</i> , 2020 , 9, A0089	1.7	1
257	Mapping haze-komi on rice koji grains using Eglucuronidase expressing Aspergillus oryzae and mass spectrometry imaging. <i>Journal of Bioscience and Bioengineering</i> , 2020 , 129, 296-301	3.3	7
256	Metabolomics approach for determining potential metabolites correlated with sensory attributes of Melaleuca cajuputi essential oil, a promising flavor ingredient. <i>Journal of Bioscience and Bioengineering</i> , 2020 , 129, 581-587	3.3	10

255	Online monitoring of the respiratory quotient reveals metabolic phases during microaerobic 2,3-butanediol production with. <i>Engineering in Life Sciences</i> , 2020 , 20, 133-144	3.4	10
254	Potato tuber metabolomics-based prediction of chip color quality and application using gas chromatography/flame ionization detector. <i>Bioscience, Biotechnology and Biochemistry</i> , 2020 , 84, 2193-	2 19 8	
253	Multi-Omics Analysis of the Effect of cAMP on Actinorhodin Production in. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 595552	5.8	5
252	Metabolomic analysis of fibrotic mice combined with public RNA-Seq human lung data reveal potential diagnostic biomarker candidates for lung fibrosis. <i>FEBS Open Bio</i> , 2020 , 10, 2427-2436	2.7	6
251	Mass Spectrometric Enzyme Histochemistry Method Developed for Visualizing Cholinesterase Activity in and. <i>Analytical Chemistry</i> , 2020 , 92, 12379-12386	7.8	3
250	Metabolomics-Based Study of the Effect of Raw Materials to the End Product of Tempe-An Indonesian Fermented Soybean. <i>Metabolites</i> , 2020 , 10,	5.6	7
249	Comparison of metabolic profiles of yeasts based on the difference of the Crabtree positive and negative. <i>Journal of Bioscience and Bioengineering</i> , 2020 , 129, 52-58	3.3	9
248	Accumulation of sugars and nucleosides in response to high salt and butanol stress in 1-butanol producing Synechococcus elongatus. <i>Journal of Bioscience and Bioengineering</i> , 2020 , 129, 177-183	3.3	0
247	Suppression of lactate production by using sucrose as a carbon source in lactic acid bacteria. Journal of Bioscience and Bioengineering, 2020 , 129, 47-51	3.3	6
246	GC-MS Based Metabolite Profiling to Monitor Ripening-Specific Metabolites in Pineapple (). <i>Metabolites</i> , 2020 , 10,	5.6	17
245	Metabolite profiling of whiteleg shrimp Litopenaeus vannamei from super-intensive culture in closed aquaculture systems: a recirculating aquaculture system and a hybrid zero water discharge-recirculating aquaculture system. <i>Metabolomics</i> , 2020 , 16, 49	4.7	8
244	GC/MS based metabolite profiling of Indonesian specialty coffee from different species and geographical origin. <i>Metabolomics</i> , 2019 , 15, 126	4.7	22
243	Automatic switching valve system to minimize variation of liquid chromatography-tandem mass spectrometry-based chiral amino acid profiling. <i>Journal of Bioscience and Bioengineering</i> , 2019 , 128, 773	1 -37 9	2
242	Development of a practical online supercritical fluid extraction-supercritical fluid chromatography/mass spectrometry system with an integrated split-flow method. <i>Journal of Chromatography A</i> , 2019 , 1592, 161-172	4.5	17
241	Tandem Mass Spectrometry Imaging Reveals Distinct Accumulation Patterns of Steroid Structural Isomers in Human Adrenal Glands. <i>Analytical Chemistry</i> , 2019 , 91, 8918-8925	7.8	27
240	A metabolomics-based approach for the evaluation of off-tree ripening conditions and different postharvest treatments in mangosteen (Garcinia mangostana). <i>Metabolomics</i> , 2019 , 15, 73	4.7	8
239	Gas chromatography-mass spectrometry metabolomics-based prediction of potato tuber sprouting during long-term storage. <i>Journal of Bioscience and Bioengineering</i> , 2019 , 128, 249-254	3.3	7
238	Comparison of Isomerase and Weimberg Pathway for EPGA Production From Xylose by Engineered. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 476	5.8	12

(2018-2019)

237	Identification of Metabolites Associated with Onset of CAD in Diabetic Patients Using CE-MS Analysis: A Pilot Study. <i>Journal of Atherosclerosis and Thrombosis</i> , 2019 , 26, 233-245	4	21
236	Metabolomics-based profiling of three terminal alkene-producing Jeotgalicoccus spp. during different growth phase. <i>Journal of Bioscience and Bioengineering</i> , 2019 , 127, 52-58	3.3	3
235	High-Throughput LC-MS/MS Method for Chiral Amino Acid Analysis Without Derivatization. <i>Methods in Molecular Biology</i> , 2019 , 2030, 253-261	1.4	1
234	Tailor-made poly-Eglutamic acid production. <i>Metabolic Engineering</i> , 2019 , 55, 239-248	9.7	17
233	HPLC fingerprinting coupled with linear discriminant analysis for the detection of adulteration in Orthosiphon aristatus. <i>Journal of Liquid Chromatography and Related Technologies</i> , 2019 , 42, 513-520	1.3	3
232	Enantioselective Amino Acid Profile Improves Metabolomics-based Sensory Prediction of Japanese Sake. <i>Food Science and Technology Research</i> , 2019 , 25, 775-784	0.8	2
231	Construction of a Prediction Model for Taste of Miso (Japanese Fermented Soybean Paste) Using Metabolic Profiling and Quantitative Descriptive Analyses. <i>Food Science and Technology Research</i> , 2019 , 25, 871-877	0.8	2
230	Imaging Isomers on a Biological Surface: A Review. <i>Mass Spectrometry</i> , 2019 , 8, A0078	1.7	3
229	High-sensitive liquid chromatography-tandem mass spectrometry-based chiral metabolic profiling focusing on amino acids and related metabolites. <i>Journal of Bioscience and Bioengineering</i> , 2019 , 127, 520-527	3.3	18
228	Metabolome analysis revealed the knockout of glyoxylate shunt as an effective strategy for improvement of 1-butanol production in transgenic Escherichia coli. <i>Journal of Bioscience and Bioengineering</i> , 2019 , 127, 301-308	3.3	10
227	Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae. <i>Journal of Bioscience and Bioengineering</i> , 2018 , 126, 183-188	3.3	7
226	Molecular Components of Arabidopsis Intact Vacuoles Clarified with Metabolomic and Proteomic Analyses. <i>Plant and Cell Physiology</i> , 2018 , 59, 1353-1362	4.9	3
225	Microbe participation in aroma production during soy sauce fermentation. <i>Journal of Bioscience and Bioengineering</i> , 2018 , 125, 688-694	3.3	27
224	Gas chromatography coupled with mass spectrometry-based metabolomics for the classification of tempe from different regions and production processes in Indonesia. <i>Journal of Bioscience and Bioengineering</i> , 2018 , 126, 411-416	3.3	11
223	Metabolic profiling of Garcinia mangostana (mangosteen) based on ripening stages. <i>Journal of Bioscience and Bioengineering</i> , 2018 , 125, 238-244	3.3	12
222	Inhibition of Saccharomyces cerevisiae growth by simultaneous uptake of glucose and maltose. <i>Journal of Bioscience and Bioengineering</i> , 2018 , 125, 52-58	3.3	5
221	Mass Spectrometric Imaging of GABA in the Drosophila melanogaster Adult Head. <i>Analytical Sciences</i> , 2018 , 34, 1055-1059	1.7	9
220	Iterative cycle of widely targeted metabolic profiling for the improvement of 1-butanol titer and productivity in. <i>Biotechnology for Biofuels</i> , 2018 , 11, 188	7.8	24

219	Identifying metabolic elements that contribute to productivity of 1-propanol bioproduction using metabolomic analysis. <i>Metabolomics</i> , 2018 , 14, 96	4.7	2
218	Highly Accurate Detection and Identification Methodology of Xenobiotic Metabolites Using Stable Isotope Labeling, Data Mining Techniques, and Time-Dependent Profiling Based on LC/HRMS/MS. <i>Analytical Chemistry</i> , 2018 , 90, 9068-9076	7.8	13
217	Directed strain evolution restructures metabolism for 1-butanol production in minimal media. <i>Metabolic Engineering</i> , 2018 , 49, 153-163	9.7	16
216	Hypoxanthine Secretion from Human Adipose Tissue and its Increase in Hypoxia. <i>Obesity</i> , 2018 , 26, 11	6881178	3 26
215	Expression Analysis of 1-aminocyclopropane-1-carboxylic Acid Oxidase Genes in Chitosan-Coated Banana. <i>HAYATI Journal of Biosciences</i> , 2018 , 25, 18	1.2	3
214	Glutamate production from ammonia via glutamate dehydrogenase 2 activity supports cancer cell proliferation under glutamine depletion. <i>Biochemical and Biophysical Research Communications</i> , 2018 , 495, 761-767	3.4	21
213	Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. <i>JCI Insight</i> , 2018 , 3,	9.9	68
212	Free D-amino acids produced by commensal bacteria in the colonic lumen. <i>Scientific Reports</i> , 2018 , 8, 17915	4.9	23
211	Mechanistic study on the high-selectivity enantioseparation of amino acids using a chiral crown ether-bonded stationary phase and acidic, highly organic mobile phase by liquid chromatography/time-of-flight mass spectrometry. <i>Journal of Chromatography A</i> , 2018 , 1578, 35-44	4.5	22
210	Metabolic repair through emergence of new pathways in Escherichia coli. <i>Nature Chemical Biology</i> , 2018 , 14, 1005-1009	11.7	14
209	Visualization of Asparaptine in Asparagus (Asparagus officinalis) Using MALDI-IMS. <i>Analytical Sciences</i> , 2018 , 34, 997-1001	1.7	10
208	Metabolomics: State-of-the-Art Technologies and Applications on Drosophila melanogaster. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1076, 257-276	3.6	5
207	Development of a Visualization Method for Imidacloprid in Drosophila melanogaster via Imaging Mass Spectrometry. <i>Analytical Sciences</i> , 2018 , 34, 991-996	1.7	10
206	Increased Dynamics of Tricarboxylic Acid Cycle and Glutamate Synthesis in Obese Adipose Tissue: IN VIVO METABOLIC TURNOVER ANALYSIS. <i>Journal of Biological Chemistry</i> , 2017 , 292, 4469-4483	5.4	26
205	Distinct signatures of dental plaque metabolic byproducts dictated by periodontal inflammatory status. <i>Scientific Reports</i> , 2017 , 7, 42818	4.9	40
204	Effect of Furan Fatty Acids and 3-Methyl-2,4-nonanedione on Light-Induced Off-Odor in Soybean Oil. <i>Journal of Agricultural and Food Chemistry</i> , 2017 , 65, 2136-2140	5.7	5
203	Metabolic profiling of Drosophila melanogaster metamorphosis: a new insight into the central metabolic pathways. <i>Metabolomics</i> , 2017 , 13, 1	4.7	14
202	Integrated Strategy for Unknown EI-MS Identification Using Quality Control Calibration Curve, Multivariate Analysis, EI-MS Spectral Database, and Retention Index Prediction. <i>Analytical Chemistry</i> 2017, 89, 6766-6773	7.8	23

(2016-2017)

201	Corrigendum to "Novel high-throughput and widely-targeted liquid chromatography-time of flight mass spectrometry method for d-amino acids in foods" [J. Biosci. Bioeng. 123 (2017) 126-133]. Journal of Bioscience and Bioengineering, 2017, 124, 365-367	3.3	
200	Investigation of storage time-dependent alterations of enantioselective amino acid profiles in kimchi using liquid chromatography-time of flight mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2017 , 124, 414-418	3.3	8
199	Wide target analysis of acylglycerols in miso (Japanese fermented soybean paste) by supercritical fluid chromatography coupled with triple quadrupole mass spectrometry and the analysis of the correlation between taste and both acylglycerols and free fatty acids. <i>Rapid Communications in</i>	2.2	7
198	Mass Spectrometry, 2017, 31, 928-936 Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. <i>Metabolic Engineering</i> , 2017, 41, 135-143	9.7	65
197	Simultaneous profiling of 17 steroid hormones for the evaluation of endocrine-disrupting chemicals in H295R cells. <i>Bioanalysis</i> , 2017 , 9, 67-69	2.1	6
196	Influence of yeast and lactic acid bacterium on the constituent profile of soy sauce during fermentation. <i>Journal of Bioscience and Bioengineering</i> , 2017 , 123, 203-208	3.3	44
195	Lipoprotein profiling methodology based on determination of apolipoprotein concentration. <i>Bioanalysis</i> , 2017 , 9, 9-19	2.1	2
194	Investigation of poly(Eglutamic acid) production via online determination of viscosity and oxygen transfer rate in shake flasks. <i>Journal of Biological Engineering</i> , 2017 , 11, 23	6.3	8
193	Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography. <i>Journal of Chromatography A</i> , 2017 , 1515, 218-231	4.5	14
192	Orthogonal partial least squares/projections to latent structures regression-based metabolomics approach for identification of gene targets for improvement of 1-butanol production in Escherichia coli. <i>Journal of Bioscience and Bioengineering</i> , 2017 , 124, 498-505	3.3	15
191	Epigenetic regulation of starvation-induced autophagy in Drosophila by histone methyltransferase G9a. <i>Scientific Reports</i> , 2017 , 7, 7343	4.9	24
190	Solid-phase analytical derivatization for gas-chromatography-mass-spectrometry-based metabolomics. <i>Journal of Bioscience and Bioengineering</i> , 2017 , 124, 700-706	3.3	15
189	Development of a liquid chromatography-tandem mass spectrometry method for quantitative analysis of trace d-amino acids. <i>Journal of Bioscience and Bioengineering</i> , 2017 , 123, 134-138	3.3	40
188	Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions. <i>Journal of Bioscience and Bioengineering</i> , 2017 , 123, 39-45	3.3	27
187	Quality evaluation of green tea leaf cultured under artificial light condition using gas chromatography/mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2017 , 123, 197-202	3.3	13
186	Novel high-throughput and widely-targeted liquid chromatography-time offflight mass spectrometry method for d-amino acids in foods. <i>Journal of Bioscience and Bioengineering</i> , 2017 , 123, 126-133	3.3	28
185	Application of metabolomics for high resolution phenotype analysis . <i>Japanese Journal of Lactic Acid Bacteria</i> , 2017 , 28, 66-73	О	
184	Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae. <i>Journal of Bioscience and Bioengineering</i> , 2016 , 121, 399-405	3.3	25

183	Metabolome analysis reveals the effect of carbon catabolite control on the poly(頃lutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945. <i>Journal of Bioscience and Bioengineering</i> , 2016 , 121, 413-9	3.3	22
182	Two isoforms of TALDO1 generated by alternative translational initiation show differential nucleocytoplasmic distribution to regulate the global metabolic network. <i>Scientific Reports</i> , 2016 , 6, 34	16 4 8	9
181	Protocol for Quantitative Imaging Mass Spectrometry. <i>Bunseki Kagaku</i> , 2016 , 65, 745-750	0.2	O
180	Quantification of coffee blends for authentication of Asian palm civet coffee (KopilLuwak) via metabolomics: A proof of concept. <i>Journal of Bioscience and Bioengineering</i> , 2016 , 122, 79-84	3.3	39
179	Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production. <i>Metabolomics</i> , 2016 , 12, 26	4.7	23
178	In vitro steroid profiling system for the evaluation of endocrine disruptors. <i>Journal of Bioscience and Bioengineering</i> , 2016 , 122, 370-7	3.3	8
177	Insights into the formation mechanism of chloropropanol fatty acid esters under laboratory-scale deodorization conditions. <i>Journal of Bioscience and Bioengineering</i> , 2016 , 122, 246-51	3.3	7
176	Extra-facile chiral separation of amino acid enantiomers by LC-TOFMS analysis. <i>Journal of Bioscience and Bioengineering</i> , 2016 , 121, 349-53	3.3	27
175	Current Status and Future Direction in Imaging Mass Spectrometry. <i>Hyomen Kagaku</i> , 2016 , 37, 593-598	3	
174	A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis. <i>PLoS ONE</i> , 2016 , 11, e0155386	3.7	17
173	Random sample consensus combined with partial least squares regression (RANSAC-PLS) for microbial metabolomics data mining and phenotype improvement. <i>Journal of Bioscience and Bioengineering</i> , 2016 , 122, 168-75	3.3	7
172	Branched chain amino acids maintain the molecular weight of poly(Eglutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation. <i>Journal of Bioscience and Bioengineering</i> , 2016 , 122, 400-5	3.3	9
171	New Insight into the Role of the Calvin Cycle: Reutilization of CO2 Emitted through Sugar Degradation. <i>Scientific Reports</i> , 2015 , 5, 11617	4.9	23
170	Influence of nitrogen source and pH value on undesired poly(Eglutamic acid) formation of a protease producing Bacillus licheniformis strain. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2015 , 42, 1203-15	4.2	18
169	Lipidomic analysis of plasma lipoprotein fractions in myocardial infarction-prone rabbits. <i>Journal of Bioscience and Bioengineering</i> , 2015 , 120, 476-82	3.3	29
168	Planteose as a storage carbohydrate required for early stage of germination of Orobanche minor and its metabolism as a possible target for selective control. <i>Journal of Experimental Botany</i> , 2015 , 66, 3085-97	7	17
167	A metabolomics-based strategy for identification of gene targets for phenotype improvement and its application to 1-butanol tolerance in Saccharomyces cerevisiae. <i>Biotechnology for Biofuels</i> , 2015 , 8, 144	7.8	24
166	Profiling of volatile compounds in APC(Min/+) mice blood by dynamic headspace extraction and gas chromatography/mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> 2015 1003 35-40	3.2	8

165	Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast. EMBO Journal, 2015, 34, 154-	68	79
164	Method for the Compound Annotation of Conjugates in Nontargeted Metabolomics Using Accurate Mass Spectrometry, Multistage Product Ion Spectra and Compound Database Searching. <i>Mass Spectrometry</i> , 2015 , 4, A0036	1.7	4
163	Multi-Component Profiling of Trace Volatiles in Blood by Gas Chromatography/Mass Spectrometry with Dynamic Headspace Extraction. <i>Mass Spectrometry</i> , 2015 , 4, A0034	1.7	3
162	Application of gas chromatography/flame ionization detector-based metabolite fingerprinting for authentication of Asian palm civet coffee (Kopi Luwak). <i>Journal of Bioscience and Bioengineering</i> , 2015 , 120, 555-61	3.3	26
161	High-throughput simultaneous analysis of pesticides by supercritical fluid chromatography coupled with high-resolution mass spectrometry. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 4457-63	5.7	49
160	MRM-DIFF: data processing strategy for differential analysis in large scale MRM-based lipidomics studies. <i>Frontiers in Genetics</i> , 2014 , 5, 471	4.5	21
159	Cloning and functional analysis of HpFAD2 and HpFAD3 genes encoding 🗓 2- and 🗓 5-fatty acid desaturases in Hansenula polymorpha. <i>Gene</i> , 2014 , 533, 110-8	3.8	11
158	Metabolic profiling approach to explore compounds related to the umami intensity of soy sauce. Journal of Agricultural and Food Chemistry, 2014 , 62, 7317-22	5.7	44
157	Supercritical fluid extraction as a preparation method for mass spectrometry of dried blood spots. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 969, 199-	2024	18
156	Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography. <i>Journal of Chromatography A</i> , 2014 , 1362, 270-7	4.5	95
155	Drosophila Sirt2/mammalian SIRT3 deacetylates ATP synthase [and regulates complex V activity. Journal of Cell Biology, 2014 , 206, 289-305	7.3	71
154	c-Src-induced activation of ceramide metabolism impairs membrane microdomains and promotes malignant progression by facilitating the translocation of c-Src to focal adhesions. <i>Biochemical Journal</i> , 2014 , 458, 81-93	3.8	15
153	Gas chromatography/mass spectrometry based component profiling and quality prediction for Japanese sake. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 118, 406-14	3.3	54
152	Practical evaluation of liquid chromatography/tandem mass spectrometry and enzyme immunoassay method for the accurate quantitative analysis of prostaglandins. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 118, 116-8	3.3	3
151	Metabolic distance estimation based on principle component analysis of metabolic turnover. Journal of Bioscience and Bioengineering, 2014 , 118, 350-5	3.3	13
150	Construction of a metabolome library for transcription factor-related single gene mutants of Saccharomyces cerevisiae. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2014 , 966, 83-92	3.2	11
149	High-quality green tea leaf production by artificial cultivation under growth chamber conditions considering amino acids profile. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 118, 710-5	3.3	12
148	Metabolomics in a Nutshell 2014 , 1-8		

147	Application of Metabolomics for High Resolution Phenotype Analysis. <i>Mass Spectrometry</i> , 2014 , 3, S004	151.7	17
146	Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production. <i>Metabolites</i> , 2014 , 4, 499-516	5.6	53
145	Metabolic profiling of retrograde pathway transcription factors rtg1 and rtg3 knockout yeast. <i>Metabolites</i> , 2014 , 4, 580-98	5.6	16
144	Novel strategy for non-targeted isotope-assisted metabolomics by means of metabolic turnover and multivariate analysis. <i>Metabolites</i> , 2014 , 4, 722-39	5.6	8
143	Determination of niacin and its metabolites using supercritical fluid chromatography coupled to tandem mass spectrometry. <i>Mass Spectrometry</i> , 2014 , 3, A0029	1.7	23
142	High-Throughput Analysis of Sucrose Fatty Acid Esters by Supercritical Fluid Chromatography/Tandem Mass Spectrometry. <i>Mass Spectrometry</i> , 2014 , 3, A0033	1.7	1
141	Development of Lipidomic Analysis Method by Utilizing Supercritical Fluid Extraction and Separation Technologies. <i>Oleoscience</i> , 2014 , 14, 329-336	0.1	
140	Changes in transcription and metabolism during the early stage of replicative cellular senescence in budding yeast. <i>Journal of Biological Chemistry</i> , 2014 , 289, 32081-32093	5.4	32
139	Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. <i>Cell Reports</i> , 2014 , 9, 661-73	10.6	94
138	Supercritical fluid chromatography/mass spectrometry in metabolite analysis. <i>Bioanalysis</i> , 2014 , 6, 1679	9-89	34
138	Supercritical fluid chromatography/mass spectrometry in metabolite analysis. <i>Bioanalysis</i> , 2014 , 6, 1679. Different-batch metabolome analysis of Saccharomyces cerevisiae based on gas chromatography/mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 117, 248-255	9-89	34 15
	Different-batch metabolome analysis of Saccharomyces cerevisiae based on gas		
137	Different-batch metabolome analysis of Saccharomyces cerevisiae based on gas chromatography/mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 117, 248-255 Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies</i>	3-3	15
137	Different-batch metabolome analysis of Saccharomyces cerevisiae based on gas chromatography/mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 117, 248-255 Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2014 , 966, 193-9 Analysis of the correlation between dipeptides and taste differences among soy sauces by using	3.3	15 50
137 136 135	Different-batch metabolome analysis of Saccharomyces cerevisiae based on gas chromatography/mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 117, 248-255 Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2014 , 966, 193-9 Analysis of the correlation between dipeptides and taste differences among soy sauces by using metabolomics-based component profiling. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 118, 56-63 Highly sensitive and selective analysis of widely targeted metabolomics using gas chromatography/triple-quadrupole mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> ,	3·3 3·2 3·3	15 50 40
137 136 135	Different-batch metabolome analysis of Saccharomyces cerevisiae based on gas chromatography/mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 117, 248-255 Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2014 , 966, 193-9 Analysis of the correlation between dipeptides and taste differences among soy sauces by using metabolomics-based component profiling. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 118, 56-63 Highly sensitive and selective analysis of widely targeted metabolomics using gas chromatography/triple-quadrupole mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 117, 122-8 Metabolic profiling of urine and blood plasma in rat models of drug addiction on the basis of morphine, methamphetamine, and cocaine-induced conditioned place preference. <i>Analytical and</i>	3·3 3·2 3·3 3·3	15 50 40 47
137 136 135 134	Different-batch metabolome analysis of Saccharomyces cerevisiae based on gas chromatography/mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 117, 248-255 Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2014 , 966, 193-9 Analysis of the correlation between dipeptides and taste differences among soy sauces by using metabolomics-based component profiling. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 118, 56-63 Highly sensitive and selective analysis of widely targeted metabolomics using gas chromatography/triple-quadrupole mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2014 , 117, 122-8 Metabolic profiling of urine and blood plasma in rat models of drug addiction on the basis of morphine, methamphetamine, and cocaine-induced conditioned place preference. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 1339-54 Metabolite profiles of polyhydroxyalkanoate-producing Ralstonia eutropha H16. <i>Metabolomics</i> ,	3·3 3·2 3·3 4·4	15 50 40 47 52

129	Selection of discriminant markers for authentication of Asian palm civet coffee (Kopi Luwak): a metabolomics approach. <i>Journal of Agricultural and Food Chemistry</i> , 2013 , 61, 7994-8001	5.7	76
128	Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis. <i>Plant Journal</i> , 2013 , 73, 761-75	6.9	53
127	Development of a practical metabolite identification technique for non-targeted metabolomics. Journal of Chromatography A, 2013 , 1301, 73-9	4.5	24
126	Fixation of CO2 in Clostridium cellulovorans analyzed by 13C-isotopomer-based target metabolomics. <i>AMB Express</i> , 2013 , 3, 61	4.1	7
125	Method for assessing the statistical significance of mass spectral similarities using basic local alignment search tool statistics. <i>Analytical Chemistry</i> , 2013 , 85, 8291-7	7.8	26
124	Development of a lipid profiling system using reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with rapid polarity switching and an automated lipid identification software. <i>Journal of Chromatography A</i> , 2013 , 1292, 211-8	4.5	95
123	Acquisition of thermotolerant yeast Saccharomyces cerevisiae by breeding via stepwise adaptation. <i>Biotechnology Progress</i> , 2013 , 29, 1116-23	2.8	13
122	Current metabolomics: practical applications. <i>Journal of Bioscience and Bioengineering</i> , 2013 , 115, 579-8	19 3.3	188
121	Current metabolomics: technological advances. <i>Journal of Bioscience and Bioengineering</i> , 2013 , 116, 9-1	63.3	143
120	Metabolic profiling of oxidized lipid-derived volatiles in blood by gas chromatography/mass spectrometry with in-tube extraction. <i>Mass Spectrometry</i> , 2013 , 2, A0018	1.7	3
119	MRMPROBS: a data assessment and metabolite identification tool for large-scale multiple reaction monitoring based widely targeted metabolomics. <i>Analytical Chemistry</i> , 2013 , 85, 5191-9	7.8	67
118	Simultaneous and rapid analysis of bile acids including conjugates by supercritical fluid chromatography coupled to tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2013 , 1299, 103	-9 1.5	49
117	Supercritical fluid chromatography/Orbitrap mass spectrometry based lipidomics platform coupled with automated lipid identification software for accurate lipid profiling. <i>Journal of Chromatography A</i> , 2013 , 1301, 237-42	4.5	86
116	Ketoacyl synthase domain is a major determinant for fatty acyl chain length in Saccharomyces cerevisiae. <i>Archives of Microbiology</i> , 2013 , 195, 843-52	3	7
115	Survival response to increased ceramide involves metabolic adaptation through novel regulators of glycolysis and lipolysis. <i>PLoS Genetics</i> , 2013 , 9, e1003556	6	19
114	SdrA, a new DeoR family regulator involved in Streptomyces avermitilis morphological development and antibiotic production. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 7916-21	4.8	9
113	Application of metabolomics for discrimination and sensory predictive modeling of food products 2013 , 54-64		
112	Inflammation and resolution are associated with upregulation of fatty acid Ebxidation in Zymosan-induced peritonitis. <i>PLoS ONE</i> , 2013 , 8, e66270	3.7	29

111	Application of supercritical fluid chromatography/mass spectrometry to lipid profiling of soybean. <i>Journal of Bioscience and Bioengineering</i> , 2012 , 113, 262-8	3.3	78
110	Metabolomics-based component profiling of hard and semi-hard natural cheeses with gas chromatography/time-of-flight-mass spectrometry, and its application to sensory predictive modeling. <i>Journal of Bioscience and Bioengineering</i> , 2012 , 113, 751-8	3.3	55
109	Metabolic fingerprinting of hard and semi-hard natural cheeses using gas chromatography with flame ionization detector for practical sensory prediction modeling. <i>Journal of Bioscience and Bioengineering</i> , 2012 , 114, 506-11	3.3	20
108	Metabolic profiling and identification of the genetic varieties and agricultural origin of Cnidium officinale and Ligusticum chuanxiong. <i>Journal of Bioscience and Bioengineering</i> , 2012 , 114, 86-91	3.3	14
107	Gas chromatography-mass spectrometry based metabolic profiling for the identification of discrimination markers of Angelicae Radix and its application to gas chromatography-flame ionization detector system. <i>Journal of Bioscience and Bioengineering</i> , 2012 , 114, 232-6	3.3	13
106	Metabolite profiling of soy sauce using gas chromatography with time-of-flight mass spectrometry and analysis of correlation with quantitative descriptive analysis. <i>Journal of Bioscience and Bioengineering</i> , 2012 , 114, 170-5	3.3	35
105	High-accuracy analysis system for the redox status of coenzyme Q10 by online supercritical fluid extraction-supercritical fluid chromatography/mass spectrometry. <i>Journal of Chromatography A</i> , 2012 , 1250, 76-9	4.5	31
104	Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. <i>Journal of Chromatography A</i> , 2012 , 1250, 212-9	4.5	102
103	Development of oxidized phosphatidylcholine isomer profiling method using supercritical fluid chromatography/tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2012 , 1250, 205-11	4.5	40
102	High-throughput and sensitive analysis of 3-monochloropropane-1,2-diol fatty acid esters in edible oils by supercritical fluid chromatography/tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2012 , 1250, 99-104	4.5	39
101	High-throughput phospholipid profiling system based on supercritical fluid extraction-supercritical fluid chromatography/mass spectrometry for dried plasma spot analysis. <i>Journal of Chromatography A</i> , 2012 , 1250, 69-75	4.5	73
100	High-throughput simultaneous analysis of pesticides by supercritical fluid chromatography/tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2012 , 1266, 143-8	4.5	66
99	Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. <i>Biomedical Chromatography</i> , 2012 , 26, 548-58	1.7	110
98	Chloroplast-mediated activation of plant immune signalling in Arabidopsis. <i>Nature Communications</i> , 2012 , 3, 926	17.4	252
97	Application of supercritical fluid carbon dioxide to the extraction and analysis of lipids. <i>Bioanalysis</i> , 2012 , 4, 2413-22	2.1	20
96	Metabolite profiles correlate closely with neurobehavioral function in experimental spinal cord injury in rats. <i>PLoS ONE</i> , 2012 , 7, e43152	3.7	16
95	GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomyces cerevisiae. <i>Biochemical and Biophysical Research Communications</i> , 2011 , 407, 185-90	3.4	24
94	Simultaneous quantification of lignans in Arabidopsis thaliana by highly sensitive capillary liquid chromatography-electrospray ionization-ion trap mass spectrometry. <i>Plant Biotechnology</i> , 2011 , 28, 287	7-233	12

93	Single-embryo metabolomics and systematic prediction of developmental stage in zebrafish. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2011 , 66, 191-8	1.7	5
92	Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat. <i>Toxicology</i> , 2011 , 287, 29-37	4.4	63
91	Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis. <i>Journal of Bioscience and Bioengineering</i> , 2011 , 112, 292-8	3.3	94
90	Predication of Japanese green tea (Sen-cha) ranking by volatile profiling using gas chromatography mass spectrometry and multivariate analysis. <i>Journal of Bioscience and Bioengineering</i> , 2011 , 112, 252-5	3.3	63
89	GC/MS based metabolomics: development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA). <i>BMC Bioinformatics</i> , 2011 , 12, 131	3.6	141
88	Metabolic profiling of Eryptoxanthin and its fatty acid esters by supercritical fluid chromatography coupled with triple quadrupole mass spectrometry. <i>Journal of Separation Science</i> , 2011 , 34, 3546-52	3.4	28
87	Use of ultra-performance liquid chromatography/time-of-flight mass spectrometry with nozzle-skimmer fragmentation for comprehensive quantitative analysis of secondary metabolites in Arabidopsis thaliana. <i>Journal of Separation Science</i> , 2011 , 34, 3587-96	3.4	7
86	GC-MS-based metabolomics reveals mechanism of action for hydrazine induced hepatotoxicity in rats. <i>Journal of Applied Toxicology</i> , 2011 , 31, 524-35	4.1	74
85	Fluorescence-monitored zero dead-volume nanoLC-microESI-QIT-TOF MS for analysis of fluorescently tagged glycosphingolipids. <i>Analyst, The</i> , 2011 , 136, 1046-50	5	11
84	Sphingosine kinases and their metabolites modulate endolysosomal trafficking in photoreceptors. Journal of Cell Biology, 2011 , 192, 557-67	7.3	24
83	Systems biology in a commercial quality study of the Japanese Angelica radix: toward an understanding of traditional medicinal plants. <i>The American Journal of Chinese Medicine</i> , 2011 , 39, 757-7	79	11
82	Metabolomics-based systematic prediction of yeast lifespan and its application for semi-rational screening of ageing-related mutants. <i>Aging Cell</i> , 2010 , 9, 616-25	9.9	53
81	Metabolic turnover analysis by a combination of in vivo 13C-labelling from 13CO2 and metabolic profiling with CE-MS/MS reveals rate-limiting steps of the C3 photosynthetic pathway in Nicotiana tabacum leaves. <i>Journal of Experimental Botany</i> , 2010 , 61, 1041-51	7	97
80	Contribution of mevalonate and methylerythritol phosphate pathways to polyisoprenoid biosynthesis in the rubber-producing plant Eucommia ulmoides oliver. <i>Zeitschrift Fur Naturforschung - Section C Journal of Biosciences</i> , 2010 , 65, 363-72	1.7	15
79	AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling. <i>Plant Physiology</i> , 2010 , 152, 2000-12	6.6	62
78	Metabolite analysis by supercritical fluid chromatography. <i>Bioanalysis</i> , 2010 , 2, 27-34	2.1	38
77	High-throughput and highly sensitive analysis method for polyisoprene in plants by pyrolysis-gas chromatography/mass spectrometry. <i>Bioscience, Biotechnology and Biochemistry</i> , 2010 , 74, 13-7	2.1	8
76	Serum metabolomics as a novel diagnostic approach for pancreatic cancer. <i>Metabolomics</i> , 2010 , 6, 518-5	5 2 8⁄	97

75	Influences of biofluid sample collection and handling procedures on GC-MS based metabolomic studies. <i>Journal of Bioscience and Bioengineering</i> , 2010 , 110, 491-9	3.3	52
74	Profiling of primary metabolite by means of capillary electrophoresis-mass spectrometry and its application for plant science. <i>Plant Biotechnology</i> , 2009 , 26, 47-52	1.3	26
73	Production of Eucommia-rubber from Eucommia ulmoides Oliv. (Hardy Rubber Tree). <i>Plant Biotechnology</i> , 2009 , 26, 71-79	1.3	28
72	Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 20063-8	11.5	36
71	Modulation of the poly(ADP-ribosyl)ation reaction via the Arabidopsis ADP-ribose/NADH pyrophosphohydrolase, AtNUDX7, is involved in the response to oxidative stress. <i>Plant Physiology</i> , 2009 , 151, 741-54	6.6	65
70	Transcriptional and metabolic response in yeast Saccharomyces cerevisiae cells during polyethylene glycol-dependent transformation. <i>Journal of Basic Microbiology</i> , 2009 , 49, 73-81	2.7	10
69	Highly sensitive and accurate profiling of carotenoids by supercritical fluid chromatography coupled with mass spectrometry. <i>Journal of Separation Science</i> , 2009 , 32, 1459-64	3.4	73
68	Fast GC-FID based metabolic fingerprinting of Japanese green tea leaf for its quality ranking prediction. <i>Journal of Separation Science</i> , 2009 , 32, 2296-304	3.4	38
67	Non-targeted metabolite fingerprinting of oriental folk medicine Angelica acutiloba roots by ultra performance liquid chromatography time-of-flight mass spectrometry. <i>Journal of Separation Science</i> , 2009 , 32, 2233-44	3.4	25
66	Reproductive organs regulate leaf nitrogen metabolism mediated by cytokinin signal. <i>Planta</i> , 2009 , 229, 633-44	4.7	21
65	High-resolution spatial and temporal analysis of phytoalexin production in oats. <i>Planta</i> , 2009 , 229, 931-	· 43 .7	19
64	Histochemical study of detailed laticifer structure and rubber biosynthesis-related protein localization in Hevea brasiliensis using spectral confocal laser scanning microscopy. <i>Planta</i> , 2009 , 230, 215-25	4.7	42
63	Overexpression of an ADP-ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants. <i>Plant Journal</i> , 2009 , 57, 289-301	6.9	65
62	Unique phytochrome responses of the holoparasitic plant Orobanche minor. <i>New Phytologist</i> , 2009 , 182, 965-974	9.8	9
61	Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry. <i>Analytica Chimica Acta</i> , 2009 , 648, 215-25	6.6	108
60	A novel application of metabolomics in vertebrate development. <i>Biochemical and Biophysical Research Communications</i> , 2009 , 386, 268-72	3.4	27
59	An approach to peak detection in GC-MS chromatograms and application of KNApSAcK database in prediction of candidate metabolites. <i>Plant Biotechnology</i> , 2009 , 26, 167-174	1.3	8
58	DrEFTIR: The data mining software for fourier transform near-infrared reflectance spectroscopy focused on food metabolic finger printing. <i>Plant Biotechnology</i> , 2009 , 26, 451-457	1.3	4

(2007-2008)

Metabolic profiling of Angelica acutiloba roots utilizing gas chromatography-time-of-flight-mass spectrometry for quality assessment based on cultivation area and cultivar via multivariate pattern recognition. <i>Journal of Bioscience and Bioengineering</i> , 2008 , 105, 655-9	3.3	55
Quality prediction of Japanese green tea using pyrolyzer coupled GC/MS based metabolic fingerprinting. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 744-50	5.7	47
Quality evaluation and prediction of Citrullus lanatus by 1H NMR-based metabolomics and multivariate analysis. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 5827-35	5.7	55
Quantitative analysis of anionic metabolites for Catharanthus roseus by capillary electrophoresis using sulfonated capillary coupled with electrospray ionization-tandem mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2008 , 105, 249-60	3.3	56
High throughput and exhaustive analysis of diverse lipids by using supercritical fluid chromatography-mass spectrometry for metabolomics. <i>Journal of Bioscience and Bioengineering</i> , 2008 , 105, 460-9	3.3	116
Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis. <i>Bioscience, Biotechnology and Biochemistry</i> , 2008 , 72, 2049-60	2.1	93
Supergiant Ampholytic Sugar Chains with Imbalanced Charge Ratio Form Saline Ultra-absorbent Hydrogels. <i>Macromolecules</i> , 2008 , 41, 4061-4064	5.5	62
High-throughput technique for comprehensive analysis of Japanese green tea quality assessment using ultra-performance liquid chromatography with time-of-flight mass spectrometry (UPLC/TOF MS). Journal of Agricultural and Food Chemistry, 2008, 56, 10705-8	5.7	103
Integrated metabolite and gene expression profiling revealing phytochrome A regulation of polyamine biosynthesis of Arabidopsis thaliana. <i>Journal of Experimental Botany</i> , 2008 , 59, 1187-200	7	27
Cloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasiliensis. <i>Bioscience, Biotechnology and Biochemistry</i> , 2008 , 72, 2903-17	2.1	59
Predicting Rank of Japanese Green Teas by Derivative Profiles of Spectra Obtained from Fourier Transform Near-Infrared Reflectance Spectroscopy. <i>Journal of Computer Aided Chemistry</i> , 2008 , 9, 37-46	50.2	2
Quality evaluation of Angelica acutiloba Kitagawa roots by 1H NMR-based metabolic fingerprinting. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 42-8	3.5	52
Canonical correlation analysis for multivariate regression and its application to metabolic fingerprinting. <i>Biochemical Engineering Journal</i> , 2008 , 40, 199-204	4.2	36
Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 231-6	5.7	153
Prediction of Japanese green tea ranking by fourier transform near-infrared reflectance spectroscopy. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 9908-12	5.7	51
Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. Journal of Experimental Botany, 2007 , 58, 415-24	7	230
1H NMR based metabolic profiling in the evaluation of Japanese green tea quality. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 9330-6	5.7	103
Analysis of Polyprenols in Eucommia ulmoides by Supercritical Fluid Chromatography. <i>International Symposium on Eucommia Ulmoides</i> , 2007 , 1, 103-108		0
	Quality prediction of Japanese green tea using pyrolyzer coupled CC/MS based metabolic fingerprinting. <i>Journal of Agricultural and Food Chemistry</i> , 2008, 56, 744-50 Quality evaluation and prediction of Citrullus lanatus by 1H NMR-based metabolomics and multivariate analysis. <i>Journal of Agricultural and Food Chemistry</i> , 2008, 56, 5827-35 Quantitative analysis of anionic metabolites for Catharanthus roseus by apillary electrophoresis using sulfonated capillary coupled with electrospray ionization-tandem mass spectrometry. <i>Journal of Bioscience and Bioengineering</i> , 2008, 105, 249-60 High throughput and exhaustive analysis of diverse lipids by using supercritical fluid chromatography-mass spectrometry for metabolomics. <i>Journal of Bioscience and Bioengineering</i> , 2008, 105, 460-9 Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis. <i>Bioscience, Biotechnology and Biochemistry</i> , 2008, 72, 2049-60 Supergiant Ampholytic Sugar Chains with Imbalanced Charge Ratio Form Saline Ultra-absorbent Hydrogels. <i>Macromolecules</i> , 2008, 41, 4061-4064 High-throughput technique for comprehensive analysis of Japanese green tea quality assessment using ultra-performance liquid chromatography with time-of-flight mass spectrometry (UPLC/TOF MS). <i>Journal of Agricultural and Food Chemistry</i> , 2008, 56, 10705-8 Integrated metabolite and gene expression profiling revealing phytochrome A regulation of polyamine biosynthesis of Arabidopsis thalians. <i>Journal of Experimental Botany</i> , 2008, 59, 1187-200 Cloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasiliensis. <i>Bioscience, Biotechnology and Biochemistry</i> , 2008, 72, 2903-17 Predicting Rank of Japanese Green Teas by Derivative Profiles of Spectra Obtained from Fourier Transform Near-Infrared Reflectance Spectroscopy. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2008, 48, 42-8 Canonical correlation analysis for multivariate regres	Prediction of Japanese green tea using pyrolyzer coupled GC/MS based metabolic fingerprinting. Journal of Agricultural and Food Chemistry, 2008, 56, 744-50 Quality prediction of Japanese green tea using pyrolyzer coupled GC/MS based metabolic fingerprinting. Journal of Agricultural and Food Chemistry, 2008, 56, 5827-35 57 Quantitative analysis of anionic metabolites for Cathranathus roseus by capillary electrophoresis using sulfonated capillary coupled with electrospray ionization-tandem mass spectrometry. Journal of Bioscience and Bioengineering, 2008, 105, 249-60 High throughput and exhaustive analysis of diverse lipids by using supercritical fluid chromatography-mass spectrometry for metabolomics. Journal of Bioscience and Bioengineering, 2008, 105, 460-9 Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis. Bioscience, Biotechnology and Biochemistry, 2008, 72, 2049-60 Supergiant Ampholytic Sugar Chains with Imbalanced Charge Ratio Form Saline Ultra-absorbent Hydroughput technique for comprehensive analysis of Japanese green tea quality assessment using ultra-performance liquid chromatography with time-of-flight mass spectrometry (UPLC/TOF MS). Journal of Agricultural and Food Chemistry, 2008, 56, 10705-8 Integrated metabolite and gene expression profiling revealing phytochrome A regulation of polyamine biosynthesis of Arabidopsis thaliana. Journal of Experimental Botany, 2008, 59, 1187-200 Cloning and characterization of the 2-C-methyt-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasillensis. Bioscience, Biotechnology and Biochemistry, 2008 Cloning and characterization of the 2-C-methyt-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasillensis. Bioscience, Biotechnology and Biochemistry, 2008, 9, 37-46-9.2 Cloning and characterization of Agricultural and Food Chemistry, 2008, 40, 22-8 Canonical correlation analysis for multivariate regression and its a

39	Analysis of metabolite profile data using batch-learning self-organizing maps 2007, 50, 517-521		6
38	Functional analysis of very long-chain fatty acid elongase gene, HpELO2, in the methylotrophic yeast Hansenula polymorpha. <i>Applied Microbiology and Biotechnology</i> , 2007 , 76, 417-27	5.7	7
37	Periploca sepium Bunge as a model plant for rubber biosynthesis study. <i>Zeitschrift Fur Naturforschung - Section C Journal of Biosciences</i> , 2007 , 62, 579-82	1.7	6
36	Femtosecond Pulsed Laser as a Microscalpel for Microdissection and Isolation of Specific Sections from Biological Samples. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, 5859-5864	1.4	7
35	Identification and characterization of a very long-chain fatty acid elongase gene in the methylotrophic yeast, Hansenula polymorpha. <i>Gene</i> , 2007 , 391, 16-25	3.8	13
34	In Situ Localization of Polyisoprene in Eucommia ulmoides. <i>International Symposium on Eucommia Ulmoides</i> , 2007 , 1, 109-111		
33	Separation of Polyprenols Using a Monolithic Silica Column in High-Performance Liquid Chromatography. <i>International Symposium on Eucommia Ulmoides</i> , 2007 , 1, 97-102		
32	Trans-polyisoprene Content and its Molecular-weight Distribution in Various Cultivars of Eucommia ulmoides. <i>International Symposium on Eucommia Ulmoides</i> , 2007 , 1, 91-93		
31	Novel plant transformation system by gene-coated gold particle introduction into specific cell using ArF excimer laser. <i>Plant Biotechnology</i> , 2007 , 24, 315-320	1.3	4
30	High-efficiency bioaffinity separation of cells and proteins using novel thermoresponsive biotinylated magnetic nanoparticles. <i>Nanobiotechnology</i> , 2006 , 2, 43-49		25
29	Metabolic fingerprinting and profiling of Arabidopsis thaliana leaf and its cultured cells T87 by GC/MS. <i>Zeitschrift Fur Naturforschung - Section C Journal of Biosciences</i> , 2006 , 61, 267-72	1.7	13
28	Pressure-assisted capillary electrophoresis mass spectrometry using combination of polarity reversion and electroosmotic flow for metabolomics anion analysis. <i>Journal of Bioscience and Bioengineering</i> , 2006 , 101, 403-9	3.3	58
27	Technical problems and practical operations in plant metabolomics. <i>Journal of Pesticide Sciences</i> , 2006 , 31, 300-304	2.7	8
26	In vivo 15N-enrichment of metabolites in suspension cultured cells and its application to metabolomics. <i>Biotechnology Progress</i> , 2006 , 22, 1003-11	2.8	30
25	Size Exclusion Chromatography of Standard Polystyrenes with a Wide Range of Molecular Weight Up to 7.45¶06 on Monolithic Silica Capillary Columns. <i>Polymer Journal</i> , 2006 , 38, 1194-1197	2.7	12
24	Plant metabolomics: potential for practical operation. <i>Journal of Bioscience and Bioengineering</i> , 2005 , 100, 347-54	3.3	139
23	Biosynthetic pathway for the C45 polyprenol, solanesol, in tobacco. <i>Bioscience, Biotechnology and Biochemistry</i> , 2004 , 68, 1988-90	2.1	19
22	DNA as a Nanomaterial Journal of Molecular Catalysis B: Enzymatic, 2004, 28, 155-166		52

(1987-2004)

21	A chitin-oligomer binding peptide obtained by screening of a phage display random peptide library and its affinity modulation corresponding to oxidationEeduction state. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2004 , 28, 181-184		6	
20	Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. <i>Journal of Biotechnology</i> , 2004 , 111, 229-40	3.7	88	
19	Expression of fungal pectin methylesterase in transgenic tobacco leads to alteration in cell wall metabolism and a dwarf phenotype. <i>Journal of Biotechnology</i> , 2004 , 111, 241-51	3.7	36	
18	Methanol production is enhanced by expression of an Aspergillus niger pectin methylesterase in tobacco cells. <i>Journal of Biotechnology</i> , 2003 , 106, 45-52	3.7	37	
17	Identification of genes induced by taxol application using a combination of differential display RT-PCR and DNA microarray analysis. <i>Zeitschrift Fur Naturforschung - Section C Journal of Biosciences</i> , 2001 , 56, 814-9	1.7	2	
16	A Screening of Phage Display Library for a Neutral Saccharide, Chitin(In a Medium Containing Ethanol. <i>Electrochemistry</i> , 2001 , 69, 966-968	1.2	3	
15	In vitro selection of hematoporphyrin binding DNA aptamers. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2000 , 10, 2653-6	2.9	50	
14	Removal of magnesium by Mg-dechelatase is a major step in the chlorophyll-degrading pathway in Ginkgo biloba in the process of autumnal tints. <i>Zeitschrift Fur Naturforschung - Section C Journal of Biosciences</i> , 2000 , 55, 923-6	1.7	20	
13	Synthesis of the four possible stereoisomers of 21-methyl-8-pentatriacontene, the female contact sex pheromone of the yellow-spotted longicorn beetle, Psacothea hilaris. <i>Journal of Bioscience and Bioengineering</i> , 1998 , 85, 120-121		6	
12	Sex Pheromonal Activity of Geometric and Optical Isomers of Synthetic Contact Pheromone to Males of the Yellow-Spotted Longicorn Beetle, Psacothea hilaris (PASCOE) (Coleoptera: Cerambycidae). <i>Applied Entomology and Zoology</i> , 1997 , 32, 654-656	1.5	18	
11	Application of lipase-catalyzed transformations for the synthesis of insect pheromones and related compounds. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 1997 , 2, 257-269		13	
10	Efficient kinetic resolution of organosilicon compounds by stereoselective esterification with hydrolases in organic solvent. <i>Applied Microbiology and Biotechnology</i> , 1993 , 38, 482	5.7	19	
9	Synthesis of the Enantiomers of (Z)-5-(1-Octenyl)oxacyclopentan-2-one, a Sex Pheromone of the Cupreous Chafer Beetle, Anomala cuprea Hope. <i>Bioscience, Biotechnology and Biochemistry</i> , 1992 , 56, 1160-1	2.1	8	
8	Preparation of carboxyalkyl acrylate by lipase-catalyzed regioselective hydrolysis of corresponding methyl ester. <i>Bioorganic and Medicinal Chemistry Letters</i> , 1992 , 2, 411-414	2.9	6	
7	Lipase-catalyzed kinetic resolution of 2,3-epoxy-8-methyl-1-nonanol, the key intermediate in the synthesis of the gypsy moth pheromone. <i>Journal of Bioscience and Bioengineering</i> , 1992 , 73, 280-283		14	
6	Large-scale preparation of (+)-disparlure, the gypsy moth pheromone, by a practical chemico-enzymatic procedure. <i>Journal of Bioscience and Bioengineering</i> , 1992 , 73, 284-286		6	
5	Lipase-catalyzed kinetic resolution of methyl 4-hydroxy-5-tetradecynoate and its application to a facile synthesis of japanese beetle pheromone. <i>Tetrahedron</i> , 1991 , 47, 6223-6230	2.4	36	
4	Structure and expression of genes coding for xylan-degrading enzymes of Bacillus pumilus. <i>FEBS Journal</i> , 1987 , 166, 539-45		22	

3	Expression of a xylanase gene of Bacillus pumilus in Escherichia coli and Bacillus subtilis. <i>Applied Microbiology and Biotechnology</i> , 1985 , 22, 259	5.7	27	
2	The complete nucleotide sequence of the xylanase gene (xynA) of Bacillus pumilus. <i>FEBS Letters</i> , 1984 , 171, 197-201	3.8	70	
1	Mass Spectrometry Imaging Reveals Localization of Secondary Metabolites in Red Yeast Rice Fermentation. ACS Food Science & Technology,		1	