Christoph K Winkler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8650141/publications.pdf

Version: 2024-02-01

279487 329751 38 1,856 23 37 citations h-index g-index papers 43 43 43 1570 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Expression and activity of heterologous hydroxyisocaproate dehydrogenases in Synechocystis sp. PCC 6803 î"hoxYH. Engineering Microbiology, 2022, 2, 100008.	2.2	9
2	Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chemical Reviews, 2022, 122, 1052-1126.	23.0	105
3	Eneâ€Reductase Catalyzed Regio―and Stereoselective 1,4â€Monoâ€Reduction of Pseudoionone to Geranylacetone. ChemCatChem, 2022, 14, e202101557.	1.8	5
4	Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
5	Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction. Angewandte Chemie, 2022, 134, .	1.6	5
6	Power of Biocatalysis for Organic Synthesis. ACS Central Science, 2021, 7, 55-71.	5. 3	186
7	Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways**. Angewandte Chemie - International Edition, 2021, 60, 6965-6969.	7.2	52
8	Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways**. Angewandte Chemie, 2021, 133, 7041-7045.	1.6	12
9	Accelerated Reaction Engineering of Photo(bio)catalytic Reactions through Parallelization with an Openâ \in Source Photoreactor. ChemPhotoChem, 2021, 5, 957-965.	1.5	14
10	Stereoselective Biotransformations of Cyclic Imines in Recombinant Cells of <i>Synechocystis</i> PCC 6803. ChemCatChem, 2020, 12, 726-730.	1.8	34
11	Extending the Library of Lightâ€Dependent Protochlorophyllide Oxidoreductases and their Solvent Tolerance, Stability in Light and Cofactor Flexibility. ChemCatChem, 2020, 12, 4044-4051.	1.8	13
12	Variants of the Acyltransferase from <i>Mycobacterium smegmatis</i> Enable Enantioselective Acyl Transfer in Water. ACS Catalysis, 2020, 10, 10500-10507.	5 . 5	23
13	Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances, 2020, 40, 107520.	6.0	97
14	Using Deep Eutectic Solvents to Overcome Limited Substrate Solubility in the Enzymatic Decarboxylation of Bio-Based Phenolic Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 16364-16370.	3.2	44
15	Controlling the Regioselectivity of Fatty Acid Hydroxylation (C ₁₀) at α―and βâ€Position by CYP152A1 (P450Bsβ) Variants. ChemCatChem, 2019, 11, 5642-5649.	1.8	15
16	Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catalysis, 2019, 9, 4115-4144.	5.5	219
17	Mechanistic Studies of Fatty Acid Activation by CYP152 Peroxygenases Reveal Unexpected Desaturase Activity. ACS Catalysis, 2019, 9, 565-577.	5. 5	76
18	Kinetic Resolution of <i>sec</i> â€Thiols by Enantioselective Oxidation with Rationally Engineered 5â€(Hydroxymethyl)furfural Oxidase. Angewandte Chemie, 2018, 130, 2914-2918.	1.6	3

#	Article	IF	CITATIONS
19	Kinetic Resolution of <i>sec</i> å€Thiols by Enantioselective Oxidation with Rationally Engineered 5â€(Hydroxymethyl)furfural Oxidase. Angewandte Chemie - International Edition, 2018, 57, 2864-2868.	7.2	15
20	Biocatalytic reduction of activated C C-bonds and beyond: emerging trends. Current Opinion in Chemical Biology, 2018, 43, 97-105.	2.8	100
21	Regioselective Biocatalytic Hydroxylation of Fatty Acids by Cytochrome P450s. Catalysis Letters, 2018, 148, 787-812.	1.4	64
22	Rational Engineering of a Flavoprotein Oxidase for Improved Direct Oxidation of Alcohols to Carboxylic Acids. Molecules, 2017, 22, 2205.	1.7	9
23	Trametes versicolor carboxylate reductase uncovered. Monatshefte Fýr Chemie, 2016, 147, 575-578.	0.9	23
24	NAD(P)Hâ€Independent Asymmetric CC Bond Reduction Catalyzed by Ene Reductases by Using Artificial Coâ€substrates as the Hydrogen Donor. Chemistry - A European Journal, 2014, 20, 1403-1409.	1.7	22
25	Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations. Nature Communications, 2014, 5, 4150.	5.8	67
26	Bioreduction and disproportionation of cyclohex-2-enone catalyzed by ene-reductase OYE-1 in â€~micro-aqueous' organic solvents. Biotechnology Letters, 2014, 36, 1329-1333.	1.1	14
27	Nitrile as Activating Group in the Asymmetric Bioreduction of $\hat{l}^2\hat{a}\in\mathbb{C}$ yanoacrylic Acids Catalyzed by Ene $\hat{a}\in\mathbb{C}$ Reductases. Advanced Synthesis and Catalysis, 2014, 356, 1878-1882.	2.1	29
28	Structural and biochemical characterization of two novel enzymes with promiscuous ene-reductase activity. New Biotechnology, 2014, 31, S20.	2.4	0
29	Chemoenzymatic Asymmetric Synthesis of Pregabalin Precursors via Asymmetric Bioreduction of \hat{l}^2 -Cyanoacrylate Esters Using Ene-Reductases. Journal of Organic Chemistry, 2013, 78, 1525-1533.	1.7	77
30	Overcoming coâ€product inhibition in the nicotinamide independent asymmetric bioreduction of activated CCâ€bonds using flavinâ€dependent eneâ€reductases. Biotechnology and Bioengineering, 2013, 1 3085-3092.	10,7	25
31	Reductive dehalogenation of \hat{l}^2 -haloacrylic ester derivatives mediated by ene-reductases. Catalysis Science and Technology, 2012, 2, 1548.	2.1	23
32	Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. Journal of Biotechnology, 2012, 162, 381-389.	1.9	130
33	A Substrateâ€Driven Approach to Determine Reactivities of α,βâ€Unsaturated Carboxylic Esters Towards Asymmetric Bioreduction. Chemistry - A European Journal, 2012, 18, 10362-10367.	1.7	44
34	Asymmetric Bioreduction of Alkenes Using Ene–Reductases YersER and KYE1 and Effects of Organic Solvents. Organic Letters, 2011, 13, 2540-2543.	2.4	76
35	Stereoâ€Controlled Asymmetric Bioreduction of α,βâ€Dehydroamino Acid Derivatives. Advanced Synthesis and Catalysis, 2011, 353, 1169-1173.	2.1	44
36	Asymmetric Synthesis of <i>O</i> â€Protected Acyloins Using Enoate Reductases: Stereochemical Control through Protecting Group Modification. European Journal of Organic Chemistry, 2010, 2010, 6354-6358.	1.2	33

#	Article	IF	CITATIONS
37	Asymmetric Synthesis of (<i>R</i>)â€3â€Hydroxyâ€2â€methylpropanoate (â€~Roche Ester') and Derivatives <i>via</i> Biocatalytic CCâ€Bond Reduction. Advanced Synthesis and Catalysis, 2010, 352, 2663-2666.	2.1	57
38	Bioreduction of α-methylcinnamaldehyde derivatives: chemo-enzymatic asymmetric synthesis of Lilialâ,,¢ and Helionalâ,,¢. Dalton Transactions, 2010, 39, 8472.	1.6	60