Christoph K Winkler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8650141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catalysis, 2019, 9, 4115-4144.	11.2	219
2	Power of Biocatalysis for Organic Synthesis. ACS Central Science, 2021, 7, 55-71.	11.3	186
3	Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. Journal of Biotechnology, 2012, 162, 381-389.	3.8	130
4	Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chemical Reviews, 2022, 122, 1052-1126.	47.7	105
5	Biocatalytic reduction of activated C C-bonds and beyond: emerging trends. Current Opinion in Chemical Biology, 2018, 43, 97-105.	6.1	100
6	Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances, 2020, 40, 107520.	11.7	97
7	Chemoenzymatic Asymmetric Synthesis of Pregabalin Precursors via Asymmetric Bioreduction of β-Cyanoacrylate Esters Using Ene-Reductases. Journal of Organic Chemistry, 2013, 78, 1525-1533.	3.2	77
8	Asymmetric Bioreduction of Alkenes Using Ene–Reductases YersER and KYE1 and Effects of Organic Solvents. Organic Letters, 2011, 13, 2540-2543.	4.6	76
9	Mechanistic Studies of Fatty Acid Activation by CYP152 Peroxygenases Reveal Unexpected Desaturase Activity. ACS Catalysis, 2019, 9, 565-577.	11.2	76
10	Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations. Nature Communications, 2014, 5, 4150.	12.8	67
11	Regioselective Biocatalytic Hydroxylation of Fatty Acids by Cytochrome P450s. Catalysis Letters, 2018, 148, 787-812.	2.6	64
12	Bioreduction of α-methylcinnamaldehyde derivatives: chemo-enzymatic asymmetric synthesis of Lilial™ and Helionalâ"¢. Dalton Transactions, 2010, 39, 8472.	3.3	60
13	Asymmetric Synthesis of (<i>R</i>)â€3â€Hydroxyâ€2â€methylpropanoate (â€~Roche Ester') and Derivatives <i>via</i> Biocatalytic Cĩ£¾Câ€Bond Reduction. Advanced Synthesis and Catalysis, 2010, 352, 2663-2666.	4.3	57
14	Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways**. Angewandte Chemie - International Edition, 2021, 60, 6965-6969.	13.8	52
15	Stereo ontrolled Asymmetric Bioreduction of α,βâ€Đehydroamino Acid Derivatives. Advanced Synthesis and Catalysis, 2011, 353, 1169-1173.	4.3	44
16	A Substrateâ€Driven Approach to Determine Reactivities of α,βâ€Unsaturated Carboxylic Esters Towards Asymmetric Bioreduction. Chemistry - A European Journal, 2012, 18, 10362-10367.	3.3	44
17	Using Deep Eutectic Solvents to Overcome Limited Substrate Solubility in the Enzymatic Decarboxylation of Bio-Based Phenolic Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 16364-16370.	6.7	44
18	Stereoselective Biotransformations of Cyclic Imines in Recombinant Cells of <i>Synechocystis</i> sp. PCC 6803. ChemCatChem, 2020, 12, 726-730.	3.7	34

#	Article	IF	CITATIONS
19	Asymmetric Synthesis of <i>O</i> â€Protected Acyloins Using Enoate Reductases: Stereochemical Control through Protecting Group Modification. European Journal of Organic Chemistry, 2010, 2010, 6354-6358.	2.4	33
20	Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	31
21	Nitrile as Activating Group in the Asymmetric Bioreduction of βâ€Cyanoacrylic Acids Catalyzed by Eneâ€Reductases. Advanced Synthesis and Catalysis, 2014, 356, 1878-1882.	4.3	29
22	Overcoming coâ€product inhibition in the nicotinamide independent asymmetric bioreduction of activated CCâ€bonds using flavinâ€dependent eneâ€reductases. Biotechnology and Bioengineering, 2013, 3085-3092.	11 0, 3	25
23	Reductive dehalogenation of β-haloacrylic ester derivatives mediated by ene-reductases. Catalysis Science and Technology, 2012, 2, 1548.	4.1	23
24	Trametes versicolor carboxylate reductase uncovered. Monatshefte Für Chemie, 2016, 147, 575-578.	1.8	23
25	Variants of the Acyltransferase from <i>Mycobacterium smegmatis</i> Enable Enantioselective Acyl Transfer in Water. ACS Catalysis, 2020, 10, 10500-10507.	11.2	23
26	NAD(P)Hâ€Independent Asymmetric CC Bond Reduction Catalyzed by Ene Reductases by Using Artificial Coâ€substrates as the Hydrogen Donor. Chemistry - A European Journal, 2014, 20, 1403-1409.	3.3	22
27	Kinetic Resolution of <i>sec</i> â€Thiols by Enantioselective Oxidation with Rationally Engineered 5â€(Hydroxymethyl)furfural Oxidase. Angewandte Chemie - International Edition, 2018, 57, 2864-2868.	13.8	15
28	Controlling the Regioselectivity of Fatty Acid Hydroxylation (C ₁₀) at α―and βâ€₽osition by CYP152A1 (P450Bsl²) Variants. ChemCatChem, 2019, 11, 5642-5649.	3.7	15
29	Bioreduction and disproportionation of cyclohex-2-enone catalyzed by ene-reductase OYE-1 in â€~micro-aqueous' organic solvents. Biotechnology Letters, 2014, 36, 1329-1333.	2.2	14
30	Accelerated Reaction Engineering of Photo(bio)catalytic Reactions through Parallelization with an Openâ€Source Photoreactor. ChemPhotoChem, 2021, 5, 957-965.	3.0	14
31	Extending the Library of Lightâ€Dependent Protochlorophyllide Oxidoreductases and their Solvent Tolerance, Stability in Light and Cofactor Flexibility. ChemCatChem, 2020, 12, 4044-4051.	3.7	13
32	Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways**. Angewandte Chemie, 2021, 133, 7041-7045.	2.0	12
33	Rational Engineering of a Flavoprotein Oxidase for Improved Direct Oxidation of Alcohols to Carboxylic Acids. Molecules, 2017, 22, 2205.	3.8	9
34	Expression and activity of heterologous hydroxyisocaproate dehydrogenases in Synechocystis sp. PCC 6803 ΔhoxYH. Engineering Microbiology, 2022, 2, 100008.	4.7	9
35	Eneâ€Reductase Catalyzed Regio―and Stereoselective 1,4â€Monoâ€Reduction of Pseudoionone to Geranylacetone. ChemCatChem, 2022, 14, e202101557.	3.7	5
36	Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction. Angewandte Chemie, 2022, 134, .	2.0	5

#	Article	IF	CITATIONS
37	Kinetic Resolution of <i>sec</i> â€Thiols by Enantioselective Oxidation with Rationally Engineered 5â€(Hydroxymethyl)furfural Oxidase. Angewandte Chemie, 2018, 130, 2914-2918.	2.0	3
38	Structural and biochemical characterization of two novel enzymes with promiscuous ene-reductase activity. New Biotechnology, 2014, 31, S20.	4.4	0