Stephane Potteaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8650097/publications.pdf

Version: 2024-02-01

28 papers

4,062 citations

20 h-index 477307 29 g-index

30 all docs 30 does citations

30 times ranked

5654 citing authors

#	Article	IF	CITATIONS
1	Natural regulatory T cells control the development of atherosclerosis in mice. Nature Medicine, 2006, 12, 178-180.	30.7	936
2	Combined Inhibition of CCL2, CX3CR1, and CCR5 Abrogates Ly6C ^{hi} and Ly6C ^{lo} Monocytosis and Almost Abolishes Atherosclerosis in Hypercholesterolemic Mice. Circulation, 2008, 117, 1649-1657.	1.6	582
3	Decreased Atherosclerotic Lesion Formation in CX3CR1/Apolipoprotein E Double Knockout Mice. Circulation, 2003, 107, 1009-1016.	1.6	428
4	Inhibition of MicroRNA-92a Prevents Endothelial Dysfunction and Atherosclerosis in Mice. Circulation Research, 2014, 114, 434-443.	4.5	317
5	Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe–/– mice during disease regression. Journal of Clinical Investigation, 2011, 121, 2025-2036.	8.2	292
6	Monocyte trafficking in acute and chronic inflammation. Trends in Immunology, 2011, 32, 470-477.	6.8	290
7	Lactadherin Deficiency Leads to Apoptotic Cell Accumulation and Accelerated Atherosclerosis in Mice. Circulation, 2007, 115, 2168-2177.	1.6	236
8	Leukocyte-Derived Interleukin 10 Is Required for Protection Against Atherosclerosis in Low-Density Lipoprotein Receptor Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1474-1478.	2.4	149
9	Transplantation of Bone Marrow–Derived Mononuclear Cells in Ischemic Apolipoprotein E–Knockout Mice Accelerates Atherosclerosis Without Altering Plaque Composition. Circulation, 2003, 108, 2839-2842.	1.6	142
10	Role of Bone Marrow–Derived CC-Chemokine Receptor 5 in the Development of Atherosclerosis of Low-Density Lipoprotein Receptor Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1858-1863.	2.4	95
11	Natural Regulatory T Cells Limit Angiotensin II–Induced Aneurysm Formation and Rupture in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2374-2379.	2.4	94
12	Angiotensin II Mobilizes Spleen Monocytes to Promote the Development of Abdominal Aortic Aneurysm in <i>Apoe</i> ^{â°'/â°'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 378-388.	2.4	79
13	Genetic and Pharmacological Inhibition of TREM-1 Limits the Development of Experimental Atherosclerosis. Journal of the American College of Cardiology, 2016, 68, 2776-2793.	2.8	76
14	Chemokine Receptor CCR1 Disruption in Bone Marrow Cells Enhances Atherosclerotic Lesion Development and Inflammation in Mice. Molecular Medicine, 2005, 11, 16-20.	4.4	58
15	Impairment in Postischemic Neovascularization in Mice Lacking the CXC Chemokine Receptor 3. Circulation Research, 2005, 96, 576-582.	4.5	42
16	Limited Macrophage Positional Dynamics in Progressing or Regressing Murine Atherosclerotic Plaques—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1702-1710.	2.4	39
17	The Dendritic Cell Receptor DNGR-1 Promotes the Development of Atherosclerosis in Mice. Circulation Research, 2017, 121, 234-243.	4.5	30
18	Monocytes, Macrophages and Other Inflammatory Mediators of Abdominal Aortic Aneurysm. Current Pharmaceutical Design, 2015, 21, 4007-4015.	1.9	29

#	Article	IF	CITATION
19	Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS ONE, 2018, 13, e0193737.	2.5	24
20	Quantitative Analysis of Monocyte Subpopulations in Murine Atherosclerotic Plaques by Multiphoton Microscopy. PLoS ONE, 2012, 7, e44823.	2.5	23
21	MicroRNA-21 Deficiency Alters the Survival of Ly-6C ^{lo} Monocytes in <i>ApoE</i> ^{â°'/â°'} Mice and Reduces Early-Stage Atherosclerosisâ€"Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 170-177.	2.4	20
22	Gingival fibroblasts protect against experimental abdominal aortic aneurysm development and rupture through tissue inhibitor of metalloproteinase-1 production. Cardiovascular Research, 2017, 113, 1364-1375.	3.8	18
23	Role of splenic monocytes in atherosclerosis. Current Opinion in Lipidology, 2015, 26, 457-463.	2.7	17
24	In vivo electrotransfer of interleukin-10 cDNA prevents endothelial upregulation of activated NF-kappaB and adhesion molecules following an atherogenic diet. European Cytokine Network, 2006, 17, 13-8.	2.0	14
25	Niacin inhibits skin dendritic cell mobilization in a GPR109A independent manner but has no impact on monocyte trafficking in atherosclerosis. Immunobiology, 2012, 217, 548-557.	1.9	10
26	Mouse models of atherosclerosis. Drug Discovery Today: Disease Models, 2007, 4, 165-170.	1.2	9
27	Vascular Dendritic Cells as Gatekeepers of Lipid Accumulation Within Nascent Atherosclerotic Plaques. Circulation Research, 2010, 106, 227-229.	4.5	8
28	Thymic stromal lymphopoietin is a key cytokine for the immunomodulation of atherogenesis with Freund's adjuvant. Journal of Cellular and Molecular Medicine, 2020, 24, 5731-5739.	3.6	4