Jason C White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Type-specific impacts of silver on the protein profile of tomato (<i>Lycopersicon esculentum L.</i>). International Journal of Phytoremediation, 2022, 24, 12-24.	1.7	4
2	Fe-based nanomaterial transformation to amorphous Fe: Enhanced alfalfa rhizoremediation of PCBs-contaminated soil. Journal of Hazardous Materials, 2022, 425, 127973.	6.5	22
3	Physiological responses of pumpkin to zinc oxide quantum dots and nanoparticles. Environmental Pollution, 2022, 296, 118723.	3.7	9
4	Lignin nanoparticles as delivery systems to facilitate translocation of methoxyfenozide in soybean (Glycine max). Journal of Agriculture and Food Research, 2022, 7, 100259.	1.2	10
5	Copper oxide (CuO) nanoparticles affect yield, nutritional quality, and auxin associated gene expression in weedy and cultivated rice (Oryza sativa L.) grains. Science of the Total Environment, 2022, 810, 152260.	3.9	33
6	Impact of engineered nanomaterials on rice (Oryza sativa L.): A critical review of current knowledge. Environmental Pollution, 2022, 297, 118738.	3.7	18
7	Foliar Application with Iron Oxide Nanomaterials Stimulate Nitrogen Fixation, Yield, and Nutritional Quality of Soybean. ACS Nano, 2022, 16, 1170-1181.	7.3	56
8	Engineered Nanomaterial Exposure Affects Organelle Genetic Material Replication in <i>Arabidopsis thaliana</i> . ACS Nano, 2022, 16, 2249-2260.	7.3	18
9	Interaction of hyperaccumulating plants with Zn and Cd nanoparticles. Science of the Total Environment, 2022, 817, 152741.	3.9	17
10	Carbon dots improve the nutritional quality of coriander (<i>Coriandrum sativum</i> L.) by promoting photosynthesis and nutrient uptake. Environmental Science: Nano, 2022, 9, 1651-1661.	2.2	9
11	Nano-enabled pesticides for sustainable agriculture and global food security. Nature Nanotechnology, 2022, 17, 347-360.	15.6	219
12	Nanostructured mesoporous silica materials induce hormesis on chili pepper (Capsicum annuum L.) under greenhouse conditions. Heliyon, 2022, 8, e09049.	1.4	11
13	Cross-species transcriptomic signatures identify mechanisms related to species sensitivity and common responses to nanomaterials. Nature Nanotechnology, 2022, 17, 661-669.	15.6	8
14	Molecular Mechanisms of Early Flowering in Tomatoes Induced by Manganese Ferrite (MnFe ₂ O ₄) Nanomaterials. ACS Nano, 2022, 16, 5636-5646.	7.3	26
15	Role of Foliar Biointerface Properties and Nanomaterial Chemistry in Controlling Cu Transfer into Wild-Type and Mutant <i>Arabidopsis thaliana</i> Leaf Tissue. Journal of Agricultural and Food Chemistry, 2022, 70, 4267-4278.	2.4	8
16	Enhancing Agrichemical Delivery and Plant Development with Biopolymer-Based Stimuli Responsive Core–Shell Nanostructures. ACS Nano, 2022, 16, 6034-6048.	7.3	35
17	Nano-bio interfacial interactions determined the contact toxicity of nTiO2 to nematodes in various soils. Science of the Total Environment, 2022, 835, 155456.	3.9	3
18	Soil and foliar exposure of soybean (Glycine max) to Cu: Nanoparticle coating-dependent plant responses. NanoImpact, 2022, 26, 100406.	2.4	22

#	Article	IF	CITATIONS
19	Nanotechnology-enabled biofortification strategies for micronutrients enrichment of food crops: Current understanding and future scope. NanoImpact, 2022, 26, 100407.	2.4	18
20	Polystyrene Nanoplastics Toxicity to Zebrafish: Dysregulation of the Brain–Intestine–Microbiota Axis. ACS Nano, 2022, 16, 8190-8204.	7.3	72
21	Rice exposure to silver nanoparticles in a life cycle study: effect of dose responses on grain metabolomic profile, yield, and soil bacteria. Environmental Science: Nano, 2022, 9, 2195-2206.	2.2	9
22	Microplastic and Nanoplastic Interactions with Plant Species: Trends, Meta-Analysis, and Perspectives. Environmental Science and Technology Letters, 2022, 9, 482-492.	3.9	38
23	Simultaneous exposure of wheat (Triticum aestivum L.) to CuO and S nanoparticles alleviates toxicity by reducing Cu accumulation and modulating antioxidant response. Science of the Total Environment, 2022, 839, 156285.	3.9	8
24	Protecting foods with biopolymer fibres. Nature Food, 2022, 3, 402-403.	6.2	7
25	Sustainable Nutrient Substrates for Enhanced Seedling Development in Hydroponics. ACS Sustainable Chemistry and Engineering, 2022, 10, 8506-8516.	3.2	9
26	Hybridization of Chitosan and Biosynthesized Silver Nanoparticles to Enhance Antimicrobial Activity against Phytopathogens in Tomato (<i>Solanum lycopersicum</i>). ACS Agricultural Science and Technology, 2022, 2, 719-733.	1.0	6
27	Tomato Fruit Nutritional Quality Is Altered by the Foliar Application of Various Metal Oxide Nanomaterials. Nanomaterials, 2022, 12, 2349.	1.9	5
28	From nanotoxicology to nano-enabled agriculture: Following the science at the Connecticut Agricultural Experiment Station (CAES). , 2022, 1, 100007.		2
29	Therapeutic Delivery of Nanoscale Sulfur to Suppress Disease in Tomatoes: In Vitro Imaging and Orthogonal Mechanistic Investigation. ACS Nano, 2022, 16, 11204-11217.	7.3	28
30	Bioengineered chitosan-iron nanocomposite controls bacterial leaf blight disease by modulating plant defense response and nutritional status of rice (Oryza sativa L.). Nano Today, 2022, 45, 101547.	6.2	36
31	Carbon-based nanomaterials suppress tobacco mosaic virus (TMV) infection and induce resistance in Nicotiana benthamiana. Journal of Hazardous Materials, 2021, 404, 124167.	6.5	91
32	A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil. Nature Nanotechnology, 2021, 16, 197-205.	15.6	133
33	Influence of Single and Combined Mixtures of Metal Oxide Nanoparticles on Eggplant Growth, Yield, and Verticillium Wilt Severity. Plant Disease, 2021, 105, 1153-1161.	0.7	15
34	Fate and Effects of Engineered Nanomaterials in Agricultural Systems. Nanotechnology in the Life Sciences, 2021, , 269-292.	0.4	0
35	Biomolecular corona formation on CuO nanoparticles in plant xylem fluid. Environmental Science: Nano, 2021, 8, 1067-1080.	2.2	18
36	Food-grade titanium dioxide particles decrease the bioaccessibility of iron released from spinach leaves in simulated human gastrointestinal tract. Environmental Science: Nano, 2021, 8, 1269-1282	2.2	2

#	Article	IF	CITATIONS
37	Synergistic remediation of PCB-contaminated soil with nanoparticulate zero-valent iron and alfalfa: targeted changes in the root metabolite-dependent microbial community. Environmental Science: Nano, 2021, 8, 986-999.	2.2	23
38	Food-Grade Titanium Dioxide Particles Decreased the Bioaccessibility of Vitamin D ₃ in the Simulated Human Gastrointestinal Tract. Journal of Agricultural and Food Chemistry, 2021, 69, 2855-2863.	2.4	6
39	Soil-Weathered CuO Nanoparticles Compromise Foliar Health and Pigment Production in Spinach (<i>Spinacia oleracea</i>). Environmental Science & Technology, 2021, 55, 13504-13512.	4.6	14
40	Nanotechnology and Plant Viruses: An Emerging Disease Management Approach for Resistant Pathogens. ACS Nano, 2021, 15, 6030-6037.	7.3	73
41	Silica Nanoparticle Dissolution Rate Controls the Suppression of <i>Fusarium Wilt</i> of Watermelon (<i>Citrullus lanatus</i>). Environmental Science & Technology, 2021, 55, 13513-13522.	4.6	52
42	Graphitic Carbon Nitride (C3N4) Reduces Cadmium and Arsenic Phytotoxicity and Accumulation in Rice (Oryza sativa L.). Nanomaterials, 2021, 11, 839.	1.9	13
43	COVID-19 and Nanoscience in the Developing World: Rapid Detection and Remediation in Wastewater. Nanomaterials, 2021, 11, 991.	1.9	7
44	New insight into the mechanism of graphene oxide-enhanced phytotoxicity of arsenic species. Journal of Hazardous Materials, 2021, 410, 124959.	6.5	18
45	Effects of Phosphorus Ensembled Nanomaterials on Nutrient Uptake and Distribution in Glycine max L. under Simulated Precipitation. Agronomy, 2021, 11, 1086.	1.3	8
46	Role of Nanoscale Hydroxyapatite in Disease Suppression of <i>Fusarium</i> -Infected Tomato. Environmental Science & Technology, 2021, 55, 13465-13476.	4.6	33
47	Elemental Sulfur Nanoparticles Enhance Disease Resistance in Tomatoes. ACS Nano, 2021, 15, 11817-11827.	7.3	60
48	Metabolomic analysis reveals dose-dependent alteration of maize (Zea mays L.) metabolites and mineral nutrient profiles upon exposure to zerovalent iron nanoparticles. NanoImpact, 2021, 23, 100336.	2.4	18
49	Foliar Application of Copper Oxide Nanoparticles Suppresses Fusarium Wilt Development on Chrysanthemum. Environmental Science & Technology, 2021, 55, 10805-10810.	4.6	31
50	Copper Oxide Nanoparticle-Embedded Hydrogels Enhance Nutrient Supply and Growth of Lettuce (<i>Lactuca sativa</i>) Infected with <i>Fusarium oxysporum</i> f. sp. <i>lactucae</i> . Environmental Science & Technology, 2021, 55, 13432-13442.	4.6	46
51	Effects of engineered lignin-graft-PLGA and zein-based nanoparticles on soybean health. NanoImpact, 2021, 23, 100329.	2.4	9
52	Fate, cytotoxicity and cellular metabolomic impact of ingested nanoscale carbon dots using simulated digestion and a triculture small intestinal epithelial model. NanoImpact, 2021, 23, 100349.	2.4	10
53	Copper Oxide Nanomaterial Fate in Plant Tissue: Nanoscale Impacts on Reproductive Tissues. Environmental Science & Technology, 2021, 55, 10769-10783.	4.6	27
54	Nano–Zoo Interfacial Interaction as a Design Principle for Hybrid Soil Remediation Technology. ACS Nano, 2021, 15, 14954-14964.	7.3	18

#	Article	IF	CITATIONS
55	Role of Charge and Size in the Translocation and Distribution of Zinc Oxide Particles in Wheat Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 11556-11564.	3.2	30
56	Nanoscale Sulfur Improves Plant Growth and Reduces Arsenic Toxicity and Accumulation in Rice (<i>Oryza sativa</i> L.). Environmental Science & Technology, 2021, 55, 13490-13503.	4.6	48
57	MoS ₂ Nanosheets–Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism. ACS Nano, 2021, 15, 16344-16356.	7.3	28
58	Biodegradable Polymer Nanocomposites Provide Effective Delivery and Reduce Phosphorus Loss during Plant Growth. ACS Agricultural Science and Technology, 2021, 1, 529-539.	1.0	12
59	A critical review of the environmental impacts of manufactured nano-objects on earthworm species. Environmental Pollution, 2021, 290, 118041.	3.7	23
60	Bioavailability and toxicity of nanoscale/bulk rare earth oxides in soil: physiological and ultrastructural alterations in <i>Eisenia fetida</i> . Environmental Science: Nano, 2021, 8, 1654-1666.	2.2	15
61	Enzyme- and Relative Humidity-Responsive Antimicrobial Fibers for Active Food Packaging. ACS Applied Materials & Interfaces, 2021, 13, 50298-50308.	4.0	33
62	Nanoscale Agrochemicals for Crop Health: A Key Line of Attack in the Battle for Global Food Security. Environmental Science & Technology, 2021, 55, 13413-13416.	4.6	15
63	Nanoenabled Delivery of RNA Molecules for Prolonged Antiviral Protection in Crop Plants: A Review. ACS Applied Nano Materials, 2021, 4, 12891-12904.	2.4	9
64	Cadmium sulfide quantum dots impact Arabidopsis thaliana physiology and morphology. Chemosphere, 2020, 240, 124856.	4.2	23
65	Exposure of tomato (<i>Lycopersicon esculentum</i>) to silver nanoparticles and silver nitrate: physiological and molecular response. International Journal of Phytoremediation, 2020, 22, 40-51.	1.7	50
66	TiO ₂ nanoparticle exposure on lettuce (<i>Lactuca sativa</i> L.): dose-dependent deterioration of nutritional quality. Environmental Science: Nano, 2020, 7, 501-513.	2.2	25
67	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	2.2	32
68	CdS nanoparticles in soil induce metabolic reprogramming in broad bean (<i>Vicia faba</i> L.) roots and leaves. Environmental Science: Nano, 2020, 7, 93-104.	2.2	19
69	Potential application of titanium dioxide nanoparticles to improve the nutritional quality of coriander (Coriandrum sativum L.). Journal of Hazardous Materials, 2020, 389, 121837.	6.5	62
70	Metalloid and Metal Oxide Nanoparticles Suppress Sudden Death Syndrome of Soybean. Journal of Agricultural and Food Chemistry, 2020, 68, 77-87.	2.4	34
71	Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nature Nanotechnology, 2020, 15, 1033-1042.	15.6	98
72	Seed Biofortification by Engineered Nanomaterials: A Pathway To Alleviate Malnutrition?. Journal of Agricultural and Food Chemistry, 2020, 68, 12189-12202.	2.4	53

#	Article	IF	CITATIONS
73	Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food, 2020, 1, 416-425.	6.2	239
74	Metabolic profile and physiological response of cucumber foliar exposed to engineered MoS2 and TiO2 nanoparticles. NanoImpact, 2020, 20, 100271.	2.4	22
75	Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environmental Science: Nano, 2020, 7, 3901-3913.	2.2	60
76	Development of Biodegradable and Antimicrobial Electrospun Zein Fibers for Food Packaging. ACS Sustainable Chemistry and Engineering, 2020, 8, 15354-15365.	3.2	63
77	Copper Nanomaterial Morphology and Composition Control Foliar Transfer through the Cuticle and Mediate Resistance to Root Fungal Disease in Tomato (<i>Solanum lycopersicum</i>). Journal of Agricultural and Food Chemistry, 2020, 68, 11327-11338.	2.4	42
78	Nanoparticle treatment of maize analyzed through the metatranscriptome: compromised nitrogen cycling, possible phytopathogen selection, and plant hormesis. Microbiome, 2020, 8, 127.	4.9	26
79	Copper sulfide nanoparticles suppress <i>Gibberella fujikuroi</i> infection in rice (<i>Oryza sativa</i>) Tj ETQq1 Environmental Science: Nano, 2020, 7, 2632-2643.	1 0.7843 2.2	14 rgBT /Ove 43
80	Accumulation of phenanthrene and its metabolites in lettuce (Lactuca sativa L.) as affected by magnetic carbon nanotubes and dissolved humic acids. Environmental Science: Nano, 2020, 7, 3759-3772.	2.2	4
81	Dual roles of glutathione in silver nanoparticle detoxification and enhancement of nitrogen assimilation in soybean (<i>Glycine max</i> (L.) Merrill). Environmental Science: Nano, 2020, 7, 1954-1966.	2.2	16
82	Carbon-based nanomaterials alter the composition of the fungal endophyte community in rice (<i>Oryza sativa</i> L.). Environmental Science: Nano, 2020, 7, 2047-2060.	2.2	12
83	Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano, 2020, 7, 2214-2228.	2.2	97
84	Enhancing Agrichemical Delivery and Seedling Development with Biodegradable, Tunable, Biopolymer-Based Nanofiber Seed Coatings. ACS Sustainable Chemistry and Engineering, 2020, 8, 9537-9548.	3.2	59
85	Interactive effects of drought, organic fertilizer, and zinc oxide nanoscale and bulk particles on wheat performance and grain nutrient accumulation. Science of the Total Environment, 2020, 722, 137808.	3.9	104
86	Xylem-based long-distance transport and phloem remobilization of copper in Salix integra Thunb Journal of Hazardous Materials, 2020, 392, 122428.	6.5	24
87	Silver Nanoparticles Alter Soil Microbial Community Compositions and Metabolite Profiles in Unplanted and Cucumber-Planted Soils. Environmental Science & Technology, 2020, 54, 3334-3342.	4.6	113
88	High-Throughput Screening for Engineered Nanoparticles That Enhance Photosynthesis Using Mesophyll Protoplasts. Journal of Agricultural and Food Chemistry, 2020, 68, 3382-3389.	2.4	34
89	Rapid organic solvent extraction coupled with surface enhanced Raman spectroscopic mapping for ultrasensitive quantification of foliarly applied silver nanoparticles in plant leaves. Environmental Science: Nano, 2020, 7, 1061-1067.	2.2	5
90	Facile Coating of Urea With Low-Dose ZnO Nanoparticles Promotes Wheat Performance and Enhances Zn Uptake Under Drought Stress. Frontiers in Plant Science, 2020, 11, 168.	1.7	120

#	Article	IF	CITATIONS
91	Safeguarding human and planetary health demands a fertilizer sector transformation. Plants People Planet, 2020, 2, 302-309.	1.6	31
92	The fate of CdS quantum dots in plants as revealed by extended X-ray absorption fine structure (EXAFS) analysis. Environmental Science: Nano, 2020, 7, 1150-1162.	2.2	16
93	Differences in toxicity, mitochondrial function and miRNome in human cells exposed in vitro to Cd as CdS quantum dots or ionic Cd. Journal of Hazardous Materials, 2020, 393, 122430.	6.5	21
94	Nutritional Status of Tomato (<i>Solanum lycopersicum</i>) Fruit Grown in <i>Fusarium</i> -Infested Soil: Impact of Cerium Oxide Nanoparticles. Journal of Agricultural and Food Chemistry, 2020, 68, 1986-1997.	2.4	51
95	Nanomaterial Transformation in the Soil–Plant System: Implications for Food Safety and Application in Agriculture. Small, 2020, 16, e2000705.	5.2	71
96	Silver nanoparticle detection and accumulation in tomato (Lycopersicon esculentum). Journal of Nanoparticle Research, 2020, 22, 1.	0.8	33
97	Co-exposure to the food additives SiO ₂ (E551) or TiO ₂ (E171) and the pesticide boscalid increases cytotoxicity and bioavailability of the pesticide in a tri-culture small intestinal epithelium model: potential health implications. Environmental Science: Nano, 2019, 6, 2786-2800.	2.2	29
98	Interaction of graphene oxide with co-existing arsenite and arsenate: Adsorption, transformation and combined toxicity. Environment International, 2019, 131, 104992.	4.8	38
99	Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Science of the Total Environment, 2019, 688, 926-934.	3.9	196
100	Joint Nanotoxicology Assessment Provides a New Strategy for Developing Nanoenabled Bioremediation Technologies. Environmental Science & Technology, 2019, 53, 7927-7929.	4.6	16
101	Proteomic, gene and metabolite characterization reveal the uptake and toxicity mechanisms of cadmium sulfide quantum dots in soybean plants. Environmental Science: Nano, 2019, 6, 3010-3026.	2.2	37
102	Carbon nanomaterials induce residue degradation and increase methane production from livestock manure in an anaerobic digestion system. Journal of Cleaner Production, 2019, 240, 118257.	4.6	34
103	Antagonistic toxicity of carbon nanotubes and pentachlorophenol to Escherichia coli: Physiological and transcriptional responses. Carbon, 2019, 145, 658-667.	5.4	23
104	C60 Fullerols Enhance Copper Toxicity and Alter the Leaf Metabolite and Protein Profile in Cucumber. Environmental Science & Technology, 2019, 53, 2171-2180.	4.6	53
105	Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environmental Science: Nano, 2019, 6, 2311-2331.	2.2	192
106	Nano-enabled strategies to enhance crop nutrition and protection. Nature Nanotechnology, 2019, 14, 532-540.	15.6	551
107	Fate of engineered nanomaterials in agroenvironments and impacts on agroecosystems. , 2019, , 105-142.		5
108	Time-Dependent Transcriptional Response of Tomato (<i>Solanum lycopersicum</i> L.) to Cu Nanoparticle Exposure upon Infection with <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> . ACS Sustainable Chemistry and Engineering, 2019, 7, 10064-10074.	3.2	69

#	Article	IF	CITATIONS
109	Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environmental Science: Nano, 2019, 6, 2002-2030.	2.2	314
110	Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways. Environmental Science: Nano, 2019, 6, 1716-1727.	2.2	92
111	Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. Environmental Science: Nano, 2019, 6, 1619-1656.	2.2	48
112	Transformation of Ag ions into Ag nanoparticle-loaded AgCl microcubes in the plant root zone. Environmental Science: Nano, 2019, 6, 1099-1110.	2.2	15
113	Surface coating determines the response of soybean plants to cadmium sulfide quantum dots. NanoImpact, 2019, 14, 100151.	2.4	28
114	Addition-omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size -specific response of soybean to micronutrients exposure. Science of the Total Environment, 2019, 665, 606-616.	3.9	62
115	Chitosan-Coated Mesoporous Silica Nanoparticle Treatment of <i>Citrullus lanatus</i> (Watermelon): Enhanced Fungal Disease Suppression and Modulated Expression of Stress-Related Genes. ACS Sustainable Chemistry and Engineering, 2019, 7, 19649-19659.	3.2	80
116	Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato. Scientific Reports, 2019, 9, 18530.	1.6	34
117	Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environmental Research, 2019, 170, 1-6.	3.7	76
118	Rapid and efficient removal of silver nanoparticles from plant surfaces using sodium hypochlorite and ammonium hydroxide solution. Food Control, 2019, 98, 68-73.	2.8	6
119	Thermal decomposition/incineration of nano-enabled coatings and effects of nanofiller/matrix properties and operational conditions on byproduct release dynamics: Potential environmental health implications. NanoImpact, 2019, 13, 44-55.	2.4	19
120	Effects of biochar on 2, 2′, 4, 4′, 5, 5′-hexabrominated diphenyl ether (BDE-153) fate in Amaranthus mangostanus L.: Accumulation, metabolite formation, and physiological response. Science of the Total Environment, 2019, 651, 1154-1165.	3.9	15
121	Plant Response to Metal-Containing Engineered Nanomaterials: An Omics-Based Perspective. Environmental Science & Technology, 2018, 52, 2451-2467.	4.6	106
122	Effect of Metalloid and Metal Oxide Nanoparticles on Fusarium Wilt of Watermelon. Plant Disease, 2018, 102, 1394-1401.	0.7	135
123	Bioaccumulation of CeO ₂ Nanoparticles by Earthworms in Biochar-Amended Soil: A Synchrotron Microspectroscopy Study. Journal of Agricultural and Food Chemistry, 2018, 66, 6609-6618.	2.4	24
124	Endophyte-enhanced phytoremediation of DDE-contaminated using <i>Cucurbita pepo</i> : A field trial. International Journal of Phytoremediation, 2018, 20, 301-310.	1.7	16
125	Uptake of Engineered Nanoparticles by Food Crops: Characterization, Mechanisms, and Implications. Annual Review of Food Science and Technology, 2018, 9, 129-153.	5.1	131
126	Graphene quantum dots in alveolar macrophage: uptake-exocytosis, accumulation in nuclei, nuclear responses and DNA cleavage. Particle and Fibre Toxicology, 2018, 15, 45.	2.8	65

#	Article	IF	CITATIONS
127	Quantum dots exposure in plants: Minimizing the adverse response. Current Opinion in Environmental Science and Health, 2018, 6, 71-76.	2.1	16
128	Copper Based Nanomaterials Suppress Root Fungal Disease in Watermelon (<i>Citrullus lanatus</i>): Role of Particle Morphology, Composition and Dissolution Behavior. ACS Sustainable Chemistry and Engineering, 2018, 6, 14847-14856.	3.2	133
129	Carbon nanomaterials differentially impact bioaccumulation and oxidative response of phenanthrene and methyl derivatives in geophagous earthworms (Metaphire guillelmi): A multi-contaminant exposure study. Journal of Environmental Chemical Engineering, 2018, 6, 6537-6544.	3.3	4
130	Engineered nanomaterials in terrestrial systems: Interactions with co-existing contaminants and trophic transfer. Current Opinion in Environmental Science and Health, 2018, 6, 60-65.	2.1	10
131	Cellular response of <i>Chlorella pyrenoidosa</i> to oxidized multi-walled carbon nanotubes. Environmental Science: Nano, 2018, 5, 2415-2425.	2.2	41
132	Exposure to Weathered and Fresh Nanoparticle and Ionic Zn in Soil Promotes Grain Yield and Modulates Nutrient Acquisition in Wheat (<i>Triticum aestivum</i> L.). Journal of Agricultural and Food Chemistry, 2018, 66, 9645-9656.	2.4	56
133	Engineered Nanomaterial Activity at the Organelle Level: Impacts on the Chloroplasts and Mitochondria. ACS Sustainable Chemistry and Engineering, 2018, 6, 12562-12579.	3.2	26
134	Role of Cerium Compounds in Fusarium Wilt Suppression and Growth Enhancement in Tomato (<i>Solanum lycopersicum</i>). Journal of Agricultural and Food Chemistry, 2018, 66, 5959-5970.	2.4	91
135	Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (<i>Nicotiana) Tj ETQq1 1 0.784314</i>	rgBT /Ove	rlgck 10 T ^{e s}
136	Minimal Transgenerational Effect of ZnO Nanomaterials on the Physiology and Nutrient Profile of <i>Phaseolus vulgaris</i> . ACS Sustainable Chemistry and Engineering, 2018, 6, 7924-7930.	3.2	27
137	Achieving food security through the very small. Nature Nanotechnology, 2018, 13, 627-629.	15.6	142
138	Metal oxide nanoparticles alter peanut (<i>Arachis hypogaea</i> L.) physiological response and reduce nutritional quality: a life cycle study. Environmental Science: Nano, 2018, 5, 2088-2102.	2.2	82
139	Co-exposure of imidacloprid and nanoparticle Ag or CeO2 to Cucurbita pepo (zucchini): Contaminant bioaccumulation and translocation. NanoImpact, 2018, 11, 136-145.	2.4	18
140	Nano-enabled fertilizers to control the release and use efficiency of nutrients. Current Opinion in Environmental Science and Health, 2018, 6, 77-83.	2.1	174
141	Nanoparticles for plant disease management. Current Opinion in Environmental Science and Health, 2018, 6, 66-70.	2.1	89
142	Effects of Manganese Nanoparticle Exposure on Nutrient Acquisition in Wheat (Triticum aestivum L.). Agronomy, 2018, 8, 158.	1.3	91
143	The Future of Nanotechnology in Plant Pathology. Annual Review of Phytopathology, 2018, 56, 111-133.	3.5	271
144	Metabolomics Reveals How Cucumber (<i>Cucumis sativus</i>) Reprograms Metabolites To Cope with Silver Ions and Silver Nanoparticle-Induced Oxidative Stress. Environmental Science & Technology, 2018, 52, 8016-8026.	4.6	165

#	Article	IF	CITATIONS
145	Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils. Plant Physiology and Biochemistry, 2017, 110, 185-193.	2.8	44
146	Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiology and Biochemistry, 2017, 110, 147-157.	2.8	55
147	Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: Yield effects and projected dietary intake from consumption. Plant Physiology and Biochemistry, 2017, 110, 128-137.	2.8	88
148	Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact, 2017, 5, 101-108.	2.4	98
149	Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environmental Science: Nano, 2017, 4, 767-781.	2.2	202
150	Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	47
151	Titanium Dioxide Nanoparticles Alleviate Tetracycline Toxicity to <i>Arabidopsis thaliana</i> (L.). ACS Sustainable Chemistry and Engineering, 2017, 5, 3204-3213.	3.2	54
152	Molecular mechanisms of maize seedling response to La ₂ O ₃ NP exposure: water uptake, aquaporin gene expression and signal transduction. Environmental Science: Nano, 2017, 4, 843-855.	2.2	51
153	Nucleo-mitochondrial interaction of yeast in response to cadmium sulfide quantum dot exposure. Journal of Hazardous Materials, 2017, 324, 744-752.	6.5	33
154	Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology, 2017, 11, 591-612.	1.6	244
155	Exposure of Cucurbita pepo to binary combinations of engineered nanomaterials: physiological and molecular response. Environmental Science: Nano, 2017, 4, 1579-1590.	2.2	40
156	A green, facile, and rapid method for microextraction and Raman detection of titanium dioxide nanoparticles from milk powder. RSC Advances, 2017, 7, 21380-21388.	1.7	22
157	Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicology, 2017, 11, 98-111.	1.6	72
158	Impact of multiwall carbon nanotubes on the accumulation and distribution of carbamazepine in collard greens (Brassica oleracea). Environmental Science: Nano, 2017, 4, 149-159.	2.2	37
159	Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants. Carbon, 2017, 114, 661-670.	5.4	66
160	Nanoparticle silver coexposure reduces the accumulation of weathered persistent pesticides by earthworms. Environmental Toxicology and Chemistry, 2017, 36, 1864-1871.	2.2	9
161	Nutritional quality of bean seeds harvested from plants grown in different soils amended with coated and uncoated zinc oxide nanomaterials. Environmental Science: Nano, 2017, 4, 2336-2347.	2.2	27
162	Nanoparticle and Ionic Zn Promote Nutrient Loading of Sorghum Grain under Low NPK Fertilization. Journal of Agricultural and Food Chemistry, 2017, 65, 8552-8559.	2.4	169

#	Article	IF	CITATIONS
163	Effects of titanium oxide nanoparticles on tetracycline accumulation and toxicity in Oryza sativa (L.). Environmental Science: Nano, 2017, 4, 1827-1839.	2.2	43
164	Influence of multi-walled carbon nanotubes and fullerenes on the bioaccumulation and elimination kinetics of phenanthrene in geophagous earthworms (Metaphire guillelmi). Environmental Science: Nano, 2017, 4, 1887-1899.	2.2	9
165	An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Particle and Fibre Toxicology, 2017, 14, 40.	2.8	112
166	Carbon Nanomaterials in Agriculture: A Critical Review. Frontiers in Plant Science, 2016, 7, 172.	1.7	269
167	Projected Dietary Intake of Zinc, Copper, and Cerium from Consumption of Carrot (Daucus carota) Exposed to Metal Oxide Nanoparticles or Metal Ions. Frontiers in Plant Science, 2016, 7, 188.	1.7	32
168	Multigenerational exposure to cerium oxide nanoparticles: Physiological and biochemical analysis reveals transmissible changes in rapid cycling Brassica rapa. NanoImpact, 2016, 1, 46-54.	2.4	51
169	Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. Environmental Science & Technology, 2016, 50, 6124-6145.	4.6	191
170	Ultra-sensitive determination of silver nanoparticles by surface-enhanced Raman spectroscopy (SERS) after hydrophobization-mediated extraction. Analyst, The, 2016, 141, 5261-5264.	1.7	14
171	Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO ₂ and In ₂ O ₃ nanoparticles. Environmental Science: Nano, 2016, 3, 1369-1379.	2.2	131
172	Evaluation of Postharvest Washing on Removal of Silver Nanoparticles (AgNPs) from Spinach Leaves. Journal of Agricultural and Food Chemistry, 2016, 64, 6916-6922.	2.4	17
173	The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano, 2016, 3, 1072-1079.	2.2	251
174	Molecular Response of Crop Plants to Engineered Nanomaterials. Environmental Science & Technology, 2016, 50, 7198-7207.	4.6	73
175	Tannic acid alleviates bulk and nanoparticle Nd ₂ O ₃ toxicity in pumpkin: a physiological and molecular response. Nanotoxicology, 2016, 10, 1243-1253.	1.6	32
176	CuO Nanoparticle Interaction with <i>Arabidopsis thaliana</i> : Toxicity, Parent-Progeny Transfer, and Gene Expression. Environmental Science & Technology, 2016, 50, 6008-6016.	4.6	160
177	Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact, 2016, 1, 9-12.	2.4	263
178	Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach. Environmental Pollution, 2016, 209, 147-154.	3.7	27
179	Cerium Biomagnification in a Terrestrial Food Chain: Influence of Particle Size and Growth Stage. Environmental Science & Technology, 2016, 50, 6782-6792.	4.6	85
180	Comparison between cultivated and total bacterial communities associated with Cucurbita pepo using cultivation-dependent techniques and 454 pyrosequencing. Systematic and Applied Microbiology, 2016, 39, 58-66.	1.2	34

#	Article	IF	CITATIONS
181	Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environmental Science: Nano, 2016, 3, 114-126.	2.2	123
182	Interactions of CuO nanoparticles with the algae <i>Chlorella pyrenoidosa</i> : adhesion, uptake, and toxicity. Nanotoxicology, 2016, 10, 1297-1305.	1.6	120
183	Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microbial Biotechnology, 2015, 8, 707-715.	2.0	95
184	Metal-Based Nanotoxicity and Detoxification Pathways in Higher Plants. Environmental Science & Technology, 2015, 49, 7109-7122.	4.6	327
185	A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	501
186	Uptake and Accumulation of Bulk and Nanosized Cerium Oxide Particles and Ionic Cerium by Radish (<i>Raphanus sativus</i> L.). Journal of Agricultural and Food Chemistry, 2015, 63, 382-390.	2.4	90
187	Reduced Silver Nanoparticle Phytotoxicity in <i>Crambe abyssinica</i> with Enhanced Glutathione Production by Overexpressing Bacterial γ-Glutamylcysteine Synthase. Environmental Science & Technology, 2015, 49, 10117-10126.	4.6	60
188	Phytotoxicity, uptake, and accumulation of silver with different particle sizes and chemical forms. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	22
189	Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method. Chemosphere, 2015, 130, 98-102.	4.2	29
190	Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS). Environmental Science & Technology, 2015, 49, 4317-4324.	4.6	98
191	Environmental Effects of Nanoceria on Seed Production of Common Bean (<i>Phaseolus vulgaris</i>): A Proteomic Analysis. Environmental Science & Technology, 2015, 49, 13283-13293.	4.6	95
192	Heteroaggregation of Cerium Oxide Nanoparticles and Nanoparticles of Pyrolyzed Biomass. Environmental Science & Technology, 2015, 49, 13294-13303.	4.6	78
193	Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biology and Biochemistry, 2015, 91, 14-22.	4.2	128
194	Terrestrial Trophic Transfer of Bulk and Nanoparticle La ₂ O ₃ Does Not Depend on Particle Size. Environmental Science & Technology, 2015, 49, 11866-11874.	4.6	88
195	Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (<i>Lactuca sativa</i> L.). Nanotoxicology, 2015, 9, 172-180.	1.6	62
196	Differential Toxicity of Bare and Hybrid ZnO Nanoparticles in Green Pea (Pisum sativum L.): A Life Cycle Study. Frontiers in Plant Science, 2015, 6, 1242.	1.7	82
197	Phytotoxicity and Ecological Safety of Engineered Nanomaterials. International Journal of Plant and Environment, 2015, 1, 09-16.	0.2	6
198	Trophic Transfer, Transformation, and Impact of Engineered Nanomaterials in Terrestrial Environments. Environmental Science & Technology, 2014, 48, 2526-2540.	4.6	374

#	Article	IF	CITATIONS
199	Particle-Size Dependent Accumulation and Trophic Transfer of Cerium Oxide through a Terrestrial Food Chain. Environmental Science & Technology, 2014, 48, 13102-13109.	4.6	143
200	Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environmental Science & Technology, 2014, 48, 9995-10009.	4.6	573
201	Interactions between engineered nanomaterials and agricultural crops: implications for food safety. Journal of Zhejiang University: Science A, 2014, 15, 552-572.	1.3	104
202	Identification and Avoidance of Potential Artifacts and Misinterpretations in Nanomaterial Ecotoxicity Measurements. Environmental Science & Technology, 2014, 48, 4226-4246.	4.6	209
203	Multiwalled Carbon Nanotubes and C ₆₀ Fullerenes Differentially Impact the Accumulation of Weathered Pesticides in Four Agricultural Plants. Environmental Science & Technology, 2013, 47, 12539-12547.	4.6	215
204	Engineered Nanoparticles May Induce Genotoxicity. Environmental Science & Technology, 2013, 47, 13212-13214.	4.6	45
205	Impact of Ag Nanoparticle Exposure on <i>p,p′</i> -DDE Bioaccumulation by Cucurbita pepo (Zucchini) and Glycine max (Soybean). Environmental Science & Technology, 2013, 47, 718-725.	4.6	95
206	Physiological and Molecular Response of <i>Arabidopsis thaliana</i> (L.) to Nanoparticle Cerium and Indium Oxide Exposure. ACS Sustainable Chemistry and Engineering, 2013, 1, 768-778.	3.2	207
207	EFFECT OF C ₆₀ FULLERENES ON THE ACCUMULATION OF WEATHERED <i>p,p</i> ′â€DDE BY PLA AND EARTHWORM SPECIES UNDER SINGLE AND MULTISPECIES CONDITIONS. Environmental Toxicology and Chemistry, 2013, 32, 1117-1123.	NT 2.2	36
208	Inheritance Profile of Weathered Chlordane and <i>P,P′</i> -DDTs Accumulation by <i>cucurbita pepo</i> hybrids. International Journal of Phytoremediation, 2013, 15, 861-876.	1.7	11
209	Xylem- and Phloem-Based Transport of CuO Nanoparticles in Maize (<i>Zea mays</i> L.). Environmental Science & Technology, 2012, 46, 4434-4441.	4.6	601
210	CuO Nanoparticle Interaction with Human Epithelial Cells: Cellular Uptake, Location, Export, and Genotoxicity. Chemical Research in Toxicology, 2012, 25, 1512-1521.	1.7	269
211	Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. Journal of Hazardous Materials, 2012, 241-242, 55-62.	6.5	185
212	Accumulation and Phytotoxicity of Engineered Nanoparticles to <i>Cucurbita Pepo</i> . International Journal of Phytoremediation, 2012, 14, 429-442.	1.7	97
213	Fullerene-Enhanced Accumulation of <i>p</i> , <i>p</i> â€2-DDE in Agricultural Crop Species. Environmental Science & Technology, 2012, 46, 9315-9323.	4.6	114
214	Toxicity of silver and copper to <i>Cucurbita pepo</i> : Differential effects of nano and bulkâ€size particles. Environmental Toxicology, 2012, 27, 510-517.	2.1	204
215	Inheritance of <i>p,p′</i> -DDE Phytoextraction Ability in Hybridized <i>Cucurbita pepo</i> Cultivars. Environmental Science & Technology, 2010, 44, 5165-5169.	4.6	29
216	Assay-Dependent Phytotoxicity of Nanoparticles to Plants. Environmental Science & Technology, 2009, 43, 9473-9479.	4.6	842

#	Article	IF	CITATIONS
217	Uptake by Cucurbitaceae of Soil-Borne Contaminants Depends upon Plant Genotype and Pollutant Properties. Environmental Science & Technology, 2006, 40, 1814-1821.	4.6	50
218	Phytoextraction of Weatheredp,p′-DDE by Zucchini (Cucurbita pepo) and Cucumber (Cucumis sativus) Under Different Cultivation Conditions. International Journal of Phytoremediation, 2004, 6, 363-385.	1.7	42
219	Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 2003, 124, 375-378.	3.7	367
220	Correlation between biological and physical availabilities of phenanthrene in soils and soil humin in aging experiments. Environmental Toxicology and Chemistry, 1999, 18, 1720-1727.	2.2	109
221	Factors affecting sequestration and bioavailability of phenanthrene in soils. Environmental Toxicology and Chemistry, 1997, 16, 2040-2045.	2.2	191