
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/864995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry, 2003, 35, 453-461.	4.2	783
2	Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 2001, 33, 1437-1445.	4.2	656
3	Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil, 2004, 261, 199-208.	1.8	525
4	Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 2015, 3, 316-323.	3.0	417
5	Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytologist, 2005, 168, 305-312.	3.5	403
6	Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis – model and research methods. Soil Biology and Biochemistry, 2011, 43, 883-894.	4.2	311
7	Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. Journal of Soils and Sediments, 2016, 16, 939-953.	1.5	254
8	Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biology and Biochemistry, 2007, 39, 744-756.	4.2	253
9	Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biology and Biochemistry, 2009, 41, 1406-1416.	4.2	215
10	The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environmental Pollution, 2006, 143, 129-137.	3.7	211
11	Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils, 2008, 44, 1025-1034.	2.3	211
12	The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biology and Biochemistry, 2005, 37, 1726-1737.	4.2	181
13	Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant and Soil, 2003, 251, 279-289.	1.8	175
14	Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biology and Biochemistry, 2006, 38, 1430-1437.	4.2	169
15	The microbial community composition changes rapidly in the early stages of decomposition of wheat residue. Soil Biology and Biochemistry, 2011, 43, 445-451.	4.2	164
16	Soil salinity decreases global soil organic carbon stocks. Science of the Total Environment, 2013, 465, 267-272.	3.9	162
17	Title is missing!. Plant and Soil, 2002, 246, 167-174.	1.8	158
18	Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biology and Fertility of Soils, 2007, 43, 565-574.	2.3	158

#	Article	IF	CITATIONS
19	Relationships between carbon dioxide emission and soil properties in salt-affected landscapes. Soil Biology and Biochemistry, 2011, 43, 667-674.	4.2	158
20	Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biology and Biochemistry, 2012, 45, 8-13.	4.2	158
21	Response of microbial activity and community structure to decreasing soil osmotic and matric potential. Plant and Soil, 2011, 344, 241-254.	1.8	157
22	Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Applied Soil Ecology, 2005, 28, 23-36.	2.1	152
23	Current and Future Biotechnological Applications of Bacterial Phytases and Phytase-Producing Bacteria. Microbes and Environments, 2008, 23, 182-191.	0.7	149
24	Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biology and Biochemistry, 2009, 41, 1966-1975.	4.2	149
25	Salinity effects on carbon mineralization in soils of varying texture. Soil Biology and Biochemistry, 2011, 43, 1908-1916.	4.2	147
26	Expression of the <i><scp>A</scp>rabidopsis</i> vacuolar <scp>H</scp> ⁺ â€pyrophosphatase gene (<i><scp>AVP</scp>1</i>) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnology Journal, 2014, 12, 378-386.	4.1	147
27	Soil microbial activity and community composition: Impact of changes in matric and osmotic potential. Soil Biology and Biochemistry, 2011, 43, 1229-1236.	4.2	142
28	Arbuscular mycorrhizal infection changes the bacterial 16ÂS rDNA community composition in the rhizosphere of maize. Mycorrhiza, 2001, 11, 297-302.	1.3	140
29	Addition of organic and inorganic P sources to soil – Effects on P pools and microorganisms. Soil Biology and Biochemistry, 2012, 49, 106-113.	4.2	125
30	Microbial community composition and functional diversity in the rhizosphere of maize. Plant and Soil, 2002, 238, 301-312.	1.8	122
31	Nutrient Availability in Soils. , 2012, , 315-330.		122
32	Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil. Biology and Fertility of Soils, 2010, 46, 79-91.	2.3	121
33	The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. FEMS Microbiology Ecology, 2007, 59, 661-670.	1.3	115
34	2-Phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. Soil Biology and Biochemistry, 2003, 35, 445-452.	4.2	113
35	Is CO2 evolution in saline soils affected by an osmotic effect and calcium carbonate?. Biology and Fertility of Soils, 2010, 46, 781-792.	2.3	106
36	Title is missing!. Plant and Soil, 1997, 189, 11-20.	1.8	103

3

#	Article	IF	CITATIONS
37	Effects of soil moisture and plant interactions on the soil microbial community structure. European Journal of Soil Biology, 2007, 43, 31-38.	1.4	103
38	Rhizosphere Properties of Poaceae Genotypes Under P-limiting Conditions. Plant and Soil, 2006, 283, 11-24.	1.8	92
39	Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant and Soil, 2005, 273, 245-256.	1.8	91
40	Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiology Ecology, 2011, 75, 163-172.	1.3	91
41	Measuring rates of gross and net mineralisation of organic phosphorus in soils. Soil Biology and Biochemistry, 2007, 39, 900-913.	4.2	81
42	Changes in soil P pools during legume residue decomposition. Soil Biology and Biochemistry, 2012, 49, 70-77.	4.2	81
43	Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biology and Biochemistry, 2008, 40, 1908-1915.	4.2	80
44	Soil respiration, microbial biomass and nutrient availability after the second amendment are influenced by legacy effects of prior residue addition. Soil Biology and Biochemistry, 2015, 88, 169-177.	4.2	80
45	Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils. Soil Biology and Biochemistry, 2008, 40, 932-946.	4.2	79
46	Rhizosphere Biology. , 2012, , 369-388.		79
47	Rewetting CO2 pulses in Australian agricultural soils and the influence of soil properties. Biology and Fertility of Soils, 2010, 46, 739-753.	2.3	78
48	AVP1: One Protein, Many Roles. Trends in Plant Science, 2017, 22, 154-162.	4.3	78
49	Wheat Responses to Arbuscular Mycorrhizal Fungi in a Highly Calcareous Soil Differ from those of Clover, and Change with Plant Development and P supply. Plant and Soil, 2005, 277, 221-232.	1.8	76
50	Response of microbial activity and biomass to increasing salinity depends on the final salinity, not the original salinity. Soil Biology and Biochemistry, 2012, 53, 50-55.	4.2	76
51	Growth, phosphorus uptake, and rhizosphere microbial-community composition of a phosphorus-efficient wheat cultivar in soils differing in pH. Journal of Plant Nutrition and Soil Science, 2005, 168, 343-351.	1.1	74
52	Sorption of dissolved organic matter in salt-affected soils: Effect of salinity, sodicity and texture. Science of the Total Environment, 2012, 435-436, 337-344.	3.9	74
53	Long-term effects of crop rotation, stubble management and tillage on soil phosphorus dynamics. Soil Research, 2006, 44, 611.	0.6	73
54	Phosphorus pools and other soil properties in the rhizosphere of wheat and legumes growing in three soils in monoculture or as a mixture of wheat and legume. Plant and Soil, 2012, 354, 283-298.	1.8	71

#	Article	IF	CITATIONS
55	Organic acid exudation and pH changes by Gordonia sp. and Pseudomonas fluorescens grown with P adsorbed to goethite. Microbiological Research, 2005, 160, 177-187.	2.5	68
56	Relationships between soil organic matter and the soil microbial biomass (size, functional diversity,) Tj ETQq 49, 582.	0 0 0 rgBT /0 0.6	verlock 10 Tf 5 67
57	Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biology and Biochemistry, 2007, 39, 87-98.	4.2	66
58	Microscale distribution and function of soil microorganisms in the interface between rhizosphere and detritusphere. Soil Biology and Biochemistry, 2012, 49, 174-183.	4.2	64
59	Effects of salinity on microbial tolerance to drying and rewetting. Biogeochemistry, 2013, 112, 71-80.	1.7	64
60	Drying and rewetting frequency influences cumulative respiration and its distribution over time in two soils with contrasting management. Soil Biology and Biochemistry, 2014, 72, 172-179.	4.2	64
61	Frequent addition of wheat straw residues to soil enhances carbon mineralization rate. Soil Biology and Biochemistry, 2009, 41, 1475-1482.	4.2	63
62	Physiological activity of a bioluminescent Pseudomonas fluorescens (strain 2–79) in the rhizosphere of mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Soil Biology and Biochemistry, 1996, 28, 869-876.	4.2	61
63	Effect of drying and rewetting on phosphorus transformations in red brown soils with different soil organic matter content. Soil Biology and Biochemistry, 2005, 37, 1573-1576.	4.2	60
64	Introducing a Decomposition Rate Modifier in the Rothamsted Carbon Model to Predict Soil Organic Carbon Stocks in Saline Soils. Environmental Science & Technology, 2011, 45, 6396-6403.	4.6	60
65	Microbial community composition and functioning in the rhizosphere of three Banksia species in native woodland in Western Australia. Applied Soil Ecology, 2005, 28, 191-201.	2.1	59
66	Methane production and microbial community structure in single-stage batch and sequential batch systems anaerobically co-digesting food waste and biosolids. Applied Microbiology and Biotechnology, 2006, 69, 589-596.	1.7	57
67	Amending soils of different texture with six compost types: impact on soil nutrient availability, plant growth and nutrient uptake. Plant and Soil, 2012, 354, 197-209.	1.8	57
68	Growth, P uptake and rhizosphere properties of intercropped wheat and chickpea in soil amended with iron phosphate or phytate. Soil Biology and Biochemistry, 2007, 39, 249-256.	4.2	56
69	Effect of exchangeable cation concentration on sorption and desorption of dissolved organic carbon in saline soils. Science of the Total Environment, 2013, 465, 226-232.	3.9	56
70	Organic amendments differ in their effect on microbial biomass and activity and on P pools in alkaline soils. Biology and Fertility of Soils, 2013, 49, 415-425.	2.3	56
71	Rapid changes in carbon and phosphorus after rewetting of dry soil. Biology and Fertility of Soils, 2011, 47, 41-50.	2.3	55
72	Response of soil respiration and microbial biomass to changing EC in saline soils. Soil Biology and Biochemistry, 2013, 65, 322-328.	4.2	55

#	Article	IF	CITATIONS
73	Dynamics of C, N, P and microbial community composition in particulate soil organic matter during residue decomposition. Plant and Soil, 2008, 303, 253-264.	1.8	54
74	Effects of land use intensity on dissolved organic carbon properties and microbial community structure. European Journal of Soil Biology, 2012, 52, 67-72.	1.4	54
75	Community composition and activity of microbes from saline soils and non-saline soils respond similarly to changes in salinity. Soil Biology and Biochemistry, 2012, 47, 175-178.	4.2	54
76	The influence of season, agricultural management, and soil properties on gross nitrogen transformations and bacterial community structure. Soil Research, 2006, 44, 453.	0.6	53
77	Soil organic phosphorus and microbial community composition as affected by 26Âyears of different management strategies. Biology and Fertility of Soils, 2008, 44, 717-726.	2.3	53
78	Measuring microbial biomass carbon by direct extraction – Comparison with chloroform fumigation-extraction. European Journal of Soil Biology, 2012, 53, 103-106.	1.4	53
79	Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 2022, 52, 4308-4324.	6.6	52
80	Growth, P uptake in grain legumes and changes in rhizosphere soil P pools. Biology and Fertility of Soils, 2012, 48, 151-159.	2.3	51
81	Drying and rewetting – Effect of frequency of cycles and length ofÂmoist period on soil respiration and microbial biomass. European Journal of Soil Biology, 2014, 62, 132-137.	1.4	49
82	Community composition of ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biology and Fertility of Soils, 2007, 44, 307-314.	2.3	48
83	Soil pH is the main factor influencing growth and rhizosphere properties of wheat following different pre-crops. Plant and Soil, 2012, 360, 271-286.	1.8	47
84	Growth, P uptake and rhizosphere properties of wheat and canola genotypes in an alkaline soil with low P availability. Biology and Fertility of Soils, 2007, 44, 143-153.	2.3	45
85	Processes in submerged soils – linking redox potential, soil organic matter turnover and plants to nutrient cycling. Plant and Soil, 2021, 464, 1.	1.8	44
86	Phytosiderophores decrease iron stress and pyoverdine production of Pseudomonas fluorescens PF-5 (pvd-inaZ). Soil Biology and Biochemistry, 1998, 30, 1275-1280.	4.2	43
87	Rapid changes in the rhizosphere bacterial community structure during re-colonization of sterilized soil. Biology and Fertility of Soils, 2004, 40, 1-6.	2.3	43
88	Microbial activity and biomass recover rapidly after leaching of saline soils. Biology and Fertility of Soils, 2013, 49, 367-371.	2.3	43
89	Respiration, available N and microbial biomass N in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage. Geoderma, 2018, 319, 167-174.	2.3	43
90	Carbon mineralization in saline soils as affected by residue composition and water potential. Biology and Fertility of Soils, 2013, 49, 71-77.	2.3	42

#	Article	IF	CITATIONS
91	Soil respiration, microbial biomass and nutrient availability in soil after repeated addition of low and high C/N plant residues. Biology and Fertility of Soils, 2016, 52, 165-176.	2.3	42
92	Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. Journal of Plant Nutrition and Soil Science, 2003, 166, 712-718.	1.1	41
93	Simulation of Salinity Effects on Past, Present, and Future Soil Organic Carbon Stocks. Environmental Science & Technology, 2012, 46, 1624-1631.	4.6	41
94	Effect of Internal and External Factors on Root Growth and Development. , 2012, , 331-346.		41
95	Plant growth and soil microbial community structure of legumes and grasses grown in monoculture or mixture. Journal of Environmental Sciences, 2008, 20, 1231-1237.	3.2	40
96	Drying and wetting in saline and saline-sodic soils—effects on microbial activity, biomass and dissolved organic carbon. Plant and Soil, 2012, 355, 51-62.	1.8	40
97	Addition of organic matter influences pH changes in reduced and oxidised acid sulfate soils. Geoderma, 2016, 262, 125-132.	2.3	40
98	Soil respiration, microbial biomass and nutrient availability in soil amended with high and low C/N residue – Influence of interval between residue additions. Soil Biology and Biochemistry, 2016, 95, 189-197.	4.2	38
99	Soil Respiration, Microbial Biomass and Nutrient Availability in Soil After Addition of Residues with Adjusted N and P Concentrations. Pedosphere, 2017, 27, 76-85.	2.1	38
100	Seasonal effects on microorganisms in the rhizosphere of two tropical plants in a polyculture agroforestry system in Central Amazonia, Brazil. Biology and Fertility of Soils, 2002, 35, 68-71.	2.3	37
101	The role of rhizosphere microorganisms in relation to P uptake by plants. Plant Ecophysiology, 2008, , 165-176.	1.5	37
102	Clay Addition to Sandy Soil Reduces Nutrient Leaching—Effect of Clay Concentration and Ped Size. Communications in Soil Science and Plant Analysis, 2017, 48, 1813-1821.	0.6	37
103	Nutrient release from composts into the surrounding soil. Geoderma, 2013, 195-196, 42-47.	2.3	36
104	Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties. Journal of Hazardous Materials, 2015, 298, 138-145.	6.5	34
105	Differential effects of composts on properties of soils with different textures. Biology and Fertility of Soils, 2012, 48, 699-707.	2.3	33
106	SEVERITY OF SALINITY ACCURATELY DETECTED AND CLASSIFIED ON A PADDOCK SCALE WITH HIGH RESOLUTION MULTISPECTRAL SATELLITE IMAGERY. Land Degradation and Development, 2013, 24, 375-384.	1.8	33
107	Rhizosphere—perspectives and Challenges—a Tribute to Lorenz Hiltner 12–17 September 2004—Munich, Germany. Plant and Soil, 2006, 283, vii-viii.	1.8	32
108	The extent of drying influences the flush of respiration after rewetting in non-saline and saline soils. Soil Biology and Biochemistry, 2011, 43, 2265-2272.	4.2	32

#	Article	IF	CITATIONS
109	Salinity affects the response of soil microbial activity and biomass to addition of carbon and nitrogen. Soil Research, 2013, 51, 68.	0.6	32
110	Clay amendment to sandy soil—effect of clay concentration and ped size on nutrient dynamics after residue addition. Journal of Soils and Sediments, 2016, 16, 2072-2080.	1.5	32
111	Effect of manganese-reducing rhizosphere bacteria on the growth of Gaeumannomyces graminis var. tritici and on manganese uptake by wheat (Triticum aestivum L.). Biology and Fertility of Soils, 1991, 12, 33-38.	2.3	31
112	Salinity reduces the ability of soil microbes to utilise cellulose. Biology and Fertility of Soils, 2013, 49, 379-386.	2.3	31
113	Impact of Salinity on Respiration and Organic Matter Dynamics in Soils is More Closely Related to Osmotic Potential than to Electrical Conductivity. Pedosphere, 2017, 27, 949-956.	2.1	31
114	Chemical changes and phosphorus release during decomposition of pea residues in soil. Soil Biology and Biochemistry, 2007, 39, 2696-2699.	4.2	30
115	Species wood density and the location of planted seedlings drive earlyâ€stage seedling survival during tropical forest restoration. Journal of Applied Ecology, 2018, 55, 1009-1018.	1.9	30
116	Belowground interactions between intercropped wheat and Brassicas in acidic and alkaline soils. Soil Biology and Biochemistry, 2007, 39, 961-971.	4.2	29
117	Wheat growth in a saline sandy loam soil as affected by N form and application rate. Plant and Soil, 2010, 328, 303-312.	1.8	29
118	Amount of organic matter required to induce sulfate reduction in sulfuric material after re-flooding is affected by soil nitrate concentration. Journal of Environmental Management, 2015, 151, 437-442.	3.8	29
119	Prolonged recovery of acid sulfate soils with sulfuric materials following severe drought: causes and implications. Geoderma, 2017, 308, 312-320.	2.3	29
120	2-Phenylethylisothiocyanate concentration and bacterial community composition in the rhizosphere of field-grown canola. Functional Plant Biology, 2004, 31, 623.	1.1	28
121	Seedling biomass and element content of Pinus sylvestris and Pinus nigra grown in sandy substrates with lignite. Geoderma, 2006, 136, 573-578.	2.3	28
122	Addition of a clay subsoil to a sandy top soil alters CO2 release and the interactions in residue mixtures. Science of the Total Environment, 2013, 465, 248-254.	3.9	28
123	Microbial community structure and residue chemistry during decomposition of shoots and roots of young and mature wheat (Triticum aestivum L.) in sand. European Journal of Soil Science, 2011, 62, 666-675.	1.8	27
124	Clay Addition to Sandy Soil—Influence of Clay Type and Size on Nutrient Availability in Sandy Soils Amended with Residues Differing in C/N ratio. Pedosphere, 2017, 27, 293-305.	2.1	27
125	Decomposition of roots and shoots of perennial grasses and annual barley—separately or in two residue mixes. Biology and Fertility of Soils, 2013, 49, 673-680.	2.3	26
126	Microbial activity and community composition in saline and non-saline soils exposed to multiple drying and rewetting events. Plant and Soil, 2011, 348, 103-113.	1.8	25

#	Article	IF	CITATIONS
127	Soil water content during and after plant growth influence nutrient availability and microbial biomass. Journal of Soil Science and Plant Nutrition, 2017, 17, 702-715.	1.7	25
128	Growth and rhizosphere P pools of legume–wheat rotations at low P supply. Biology and Fertility of Soils, 2013, 49, 41-49.	2.3	24
129	Changes in phosphorus pools in three soils upon addition of legume residues differing in carbon/phosphorus ratio. Soil Research, 2013, 51, 484.	0.6	24
130	Residue properties influence the impact of salinity on soil respiration. Biology and Fertility of Soils, 2015, 51, 99-111.	2.3	24
131	Recovery of soil respiration after drying. Plant and Soil, 2011, 348, 269-279.	1.8	23
132	Plant-Microbe Interactions in the Rhizosphere and Nutrient Cycling. , 2007, , 159-182.		23
133	Grain legume pre-crops and their residues affect the growth, P uptake and size of P pools in the rhizosphere of the following wheat. Biology and Fertility of Soils, 2012, 48, 775-785.	2.3	22
134	Microbial biomass, nutrient availability and nutrient uptake by wheat in two soils with organic amendments. Journal of Soil Science and Plant Nutrition, 2013, , 0-0.	1.7	22
135	Response of microbial activity and biomass in rhizosphere and bulk soils to increasing salinity. Plant and Soil, 2014, 381, 297-306.	1.8	22
136	The number of moist days determines respiration in drying and rewetting cycles. Biology and Fertility of Soils, 2015, 51, 33-41.	2.3	22
137	Previous residue addition rate and C/N ratio influence nutrient availability and respiration rate after the second residue addition. Geoderma, 2017, 285, 217-224.	2.3	22
138	Microbial activity and biomass and N and P availability in a saline sandy loam amended with inorganic N and lupin residues. European Journal of Soil Biology, 2011, 47, 310-315.	1.4	21
139	Respiration in a sand amended with clay – Effect of residue type andÂrate. European Journal of Soil Biology, 2013, 58, 19-23.	1.4	21
140	Clay amount and distribution influence organic carbon content in sand with subsoil clay addition. Soil and Tillage Research, 2018, 184, 253-260.	2.6	21
141	Bacterial Community Composition and Activity in Rhizosphere of Roots Colonized by Arbuscular Mycorrhizal Fungi. , 2006, , 139-154.		20
142	Detection of aluminium tolerance plasmids and microbial diversity in the rhizosphere of plants grown in acidic volcanic soil. European Journal of Soil Biology, 2010, 46, 255-263.	1.4	20
143	Legume residue influence arbuscular mycorrhizal colonisation and P uptake by wheat. Biology and Fertility of Soils, 2011, 47, 701-707.	2.3	20
144	Legume rotation effects on early growth and rhizosphere microbiology of sorghum in West African soils. Plant and Soil, 2004, 264, 325-334.	1.8	19

#	Article	IF	CITATIONS
145	Retention and loss of water extractable carbon in soils: Effect of clay properties. Science of the Total Environment, 2014, 470-471, 400-406.	3.9	19
146	Type of organic carbon amendment influences pH changes in acid sulfate soils in flooded and dry conditions. Journal of Soils and Sediments, 2016, 16, 518-526.	1.5	19
147	Soil respiration and microbial biomass in multiple drying and rewetting cycles – Effect of glucose addition. Geoderma, 2017, 305, 219-227.	2.3	19
148	Rapid recovery of net ecosystem production in a semi-arid woodland after a wildfire. Agricultural and Forest Meteorology, 2020, 291, 108099.	1.9	19
149	Effect of N concentration and N source on root colonization by Pseudomonas fluorescens 2-79RLI. Plant and Soil, 1999, 215, 135-141.	1.8	18
150	Soil Microbial Community Structure and Function Assessed by FAME, PLFA and DGGE — Advantages and Limitations. Soil Biology, 2007, , 181-200.	0.6	18
151	Cumulative respiration in two drying and rewetting cycles depends on the number and distribution of moist days. Geoderma, 2015, 243-244, 168-174.	2.3	18
152	Effect of mono- and divalent cations on sorption of water-extractable organic carbon and microbial activity. Biology and Fertility of Soils, 2014, 50, 727-734.	2.3	17
153	Alteration of organic matter during remediation of acid sulfate soils. Geoderma, 2018, 332, 121-134.	2.3	17
154	Soil phosphorus pools in the detritusphere of plant residues with different C/P ratio—influence of drying and rewetting. Biology and Fertility of Soils, 2018, 54, 841-852.	2.3	17
155	Responses of Soil Microbial Activity and Biomass to Salinity After Repeated Additions of Plant Residues. Pedosphere, 2015, 25, 177-185.	2.1	16
156	Linking organic matter composition in acid sulfate soils to pH recovery after re-submerging. Geoderma, 2017, 308, 350-362.	2.3	16
157	Effects of tannery sludge application on physiological and fatty acid profiles of the soil microbial community. Applied Soil Ecology, 2012, 61, 92-99.	2.1	15
158	Addition of a fine-textured soil to compost to reduce nutrient leaching in a sandy soil. Soil Research, 2013, 51, 232.	0.6	15
159	Seedling growth responses to speciesâ€, neighborhoodâ€, and landscapeâ€scale effects during tropical forest restoration. Ecosphere, 2018, 9, e02386.	1.0	15
160	Is cortical root colonization required for carbon transfer to arbuscular mycorrhizal fungi? Evidence from colonization phenotypes and spore production in the reduced mycorrhizal colonization (rmc) mutant of tomato. Botany, 2008, 86, 1009-1019.	0.5	14
161	Short-term carbon mineralization in saline–sodic soils. Biology and Fertility of Soils, 2012, 48, 475-479.	2.3	14
162	Short-term effects of application of different rates of inorganic P and residue P on soil P pools and wheat growth. Journal of Plant Nutrition and Soil Science, 2013, 176, 696-702.	1.1	14

#	Article	IF	CITATIONS
163	A wildfire event influences ecosystem carbon fluxes but not soil respiration in a semi-arid woodland. Agricultural and Forest Meteorology, 2016, 226-227, 57-66.	1.9	14
164	Consumption and alteration of different organic matter sources during remediation of a sandy sulfuric soil. Geoderma, 2019, 347, 220-232.	2.3	14
165	Organic matter addition can prevent acidification during oxidation of sandy hypersulfidic and hyposulfidic material: Effect of application form, rate and C/N ratio. Geoderma, 2016, 276, 26-32.	2.3	13
166	Phosphorus Pools and Plant Uptake in Manure-Amended Soil. Journal of Soil Science and Plant Nutrition, 2019, 19, 175-186.	1.7	13
167	Phosphorus pools in sulfuric acid sulfate soils: influence of water content, pH increase and P addition. Journal of Soils and Sediments, 2020, 20, 1446-1453.	1.5	13
168	Root Distribution and Nutrient Status of Mycorrhizal and Non-mycorrhizal Pinus sylvestris L. Seedlings Growing in a Sandy Substrate with Lignite Fragments. Plant and Soil, 2005, 276, 347-357.	1.8	12
169	Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wildfire. Biogeosciences, 2015, 12, 5093-5101.	1.3	12
170	Direct and carry-over effects of summer rainfall on ecosystem carbon uptake and water use efficiency in a semi-arid woodland. Agricultural and Forest Meteorology, 2018, 263, 15-24.	1.9	12
171	Changes in phosphorus pools in the detritusphere induced by removal of P or switch of residues with low and high C/P ratio. Biology and Fertility of Soils, 2020, 56, 1-10.	2.3	12
172	Transformation of jarosite during simulated remediation of a sandy sulfuric soil. Science of the Total Environment, 2021, 773, 145546.	3.9	12
173	Impact of total water potential and varying contribution of matric and osmotic potential on carbon mineralization in saline soils. European Journal of Soil Biology, 2013, 56, 95-100.	1.4	11
174	Mobilisation of rock phosphate by surface application of compost. Biology and Fertility of Soils, 2013, 49, 287-294.	2.3	11
175	Compost effects on microbial biomass and soil P pools as affected by particle size and soil properties. Journal of Soil Science and Plant Nutrition, 2013, , 0-0.	1.7	11
176	Increases in organic carbon concentration and stock after clay addition to sands: validation of sampling methodology and effects of modification method. Soil Research, 2017, 55, 124.	0.6	11
177	Prior rainfall pattern determines response of net ecosystem carbon exchange to a large rainfall event in a semi-arid woodland. Agriculture, Ecosystems and Environment, 2017, 247, 112-119.	2.5	11
178	Changes in water content of two agricultural soils does not alter labile P and C pools. Plant and Soil, 2011, 348, 185-201.	1.8	10
179	Effect of incorporated or mulched compost on leaf nutrient concentrations and performance of Vitis vinifera cv. Merlot. Journal of Soil Science and Plant Nutrition, 2013, , 0-0.	1.7	10
180	Respiration and Sorption of Water-Extractable Organic Carbon as Affected by Addition of Ca2+, Isolated Clay or Clay-Rich Subsoil to Sand. Pedosphere, 2014, 24, 98-106.	2.1	10

#	Article	IF	CITATIONS
181	Addition of organic material to sulfuric soil can reduce leaching of protons, iron and aluminium. Geoderma, 2016, 271, 63-70.	2.3	10
182	Plant Growth and Nutrient Uptake in Soil Amended with Mixes of Organic Materials Differing in C/N Ratio and Decomposition Stage. Journal of Soil Science and Plant Nutrition, 2019, 19, 512-523.	1.7	10
183	Soil amendment with high and low C/N residue -influence of low soil water content between first and second residue addition on soil respiration, microbial biomass and nutrient availability. Journal of Soil Science and Plant Nutrition, 2017, 17, 594-608.	1.7	10
184	Potential soil P mobilisation capacity–method development and comparison of rhizosphere soil from different crops. Plant and Soil, 2012, 354, 259-267.	1.8	9
185	P Pools After Seven-Year P Fertiliser Application Are Influenced by Wheat Straw Addition and Wheat Growth. Journal of Soil Science and Plant Nutrition, 2019, 19, 603-610.	1.7	9
186	Sandy Soil Amended with Clay Soil: Effect of Clay Soil Properties on Soil Respiration, Microbial Biomass, and Water Extractable Organic C. Journal of Soil Science and Plant Nutrition, 2020, 20, 2465-2470.	1.7	9
187	Threshold for labile phosphate in a sandy acid sulfate soil. Geoderma, 2020, 371, 114359.	2.3	9
188	Soil respiration and microbial biomass after residue addition are influenced by the extent by which water-extractable organic C was removed from the residues. European Journal of Soil Biology, 2014, 63, 28-32.	1.4	8
189	Clay addition to sandy soil: effect of clay concentration and ped size on microbial biomass and nutrient dynamics after addition of low C/N ratio residue. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	1.7	8
190	Soil Respiration, Microbial Biomass C and N Availability in a Sandy Soil Amended with Clay and Residue Mixtures. Pedosphere, 2016, 26, 643-651.	2.1	8
191	Nitrogen and phosphorus removal from wastewater by sand with wheat straw. Environmental Science and Pollution Research, 2019, 26, 11212-11223.	2.7	8
192	Presence of wheat straw in soil influences nutrient availability and leaching in soil mulched with high or low C/N organic materials. Archives of Agronomy and Soil Science, 2021, 67, 342-353.	1.3	8
193	Phosphorus pools in acid sulfate soil are influenced by soil water content and form in which P is added. Geoderma, 2021, 381, 114692.	2.3	8
194	Porosity and organic matter distribution in jarositic phyto tubules of sulfuric soils assessed by combined µCT and NanoSIMS analysis. Geoderma, 2021, 399, 115124.	2.3	8
195	Changes in microbial biomass C, extractable C and available N during the early stages of decomposition of residue mixtures. Soil Research, 2014, 52, 366.	0.6	7
196	Organic Materials Differ in Ability to Remove Protons, Iron and Aluminium from Acid Sulfate Soil Drainage Water. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	7
197	Plant and microbial-induced changes in P pools in soil amended with straw and inorganic P. Journal of Soil Science and Plant Nutrition, 2017, 17, 1088-1101.	1.7	7
198	Assessment of the Binding of Protons, Al and Fe to Biochar at Different pH Values and Soluble Metal Concentrations. Water (Switzerland), 2018, 10, 55.	1.2	7

#	Article	IF	CITATIONS
199	Influence of clay clod size and number for organic carbon distribution in sandy soil with clay addition. Geoderma, 2019, 335, 123-132.	2.3	7
200	Changes in Nitrogen, Phosphorus, and Potassium in a Longâ€Term Continuous Maize–Wheat Cropping System in India. Communications in Soil Science and Plant Analysis, 2009, 40, 3348-3366.	0.6	6
201	Binding of water-extractable organic carbon to clay subsoil: effects of clay subsoil properties. Soil Research, 2015, 53, 81.	0.6	6
202	Nutrient availability, soil respiration and microbial biomass after the second residue addition are influenced by the C/N ratio of the first residue added, but not by drying and rewetting between residue amendments. European Journal of Soil Biology, 2016, 77, 68-76.	1.4	6
203	Sorption of Water-Extractable Organic Carbon in Various Clay Subsoils: Effects of Soil Properties. Pedosphere, 2016, 26, 55-61.	2.1	6
204	Mixing organic amendments with high and low C/N ratio influences nutrient availability and leaching in sandy soil. Journal of Soil Science and Plant Nutrition, 2018, , 0-0.	1.7	6
205	Impact of a short heating event followed by rewetting on soil respiration and nutrient availability is not only due to soil drying during heating. Biology and Fertility of Soils, 2019, 55, 553-564.	2.3	6
206	Phosphorus Pools in Acid Sulfate Soil Are Influenced by pH, Water Content, and Addition of Organic Matter. Journal of Soil Science and Plant Nutrition, 2021, 21, 1066-1075.	1.7	6
207	Contributions of Rhizosphere Interactions to Soil Biological Fertility. , 2007, , 81-98.		6
208	Addition of a clay subsoil to a sandy topsoil changes the response of microbial activity to drying and rewetting after residue addition – a model experiment. Journal of Plant Nutrition and Soil Science, 2014, 177, 532-540.	1.1	5
209	Residue addition combined with rewetting of dry soil – Effect of timing of residue addition on soil respiration, microbial biomass, nutrient availability and legacy effect. Geoderma, 2017, 299, 83-90.	2.3	5
210	Soil Water Availability Influences P Pools in the Detritusphere of Crop Residues with Different C/P Ratios. Journal of Soil Science and Plant Nutrition, 2019, 19, 771-779.	1.7	5
211	Previous water content influences the response of soil respiration to changes in water content in non-saline and saline soils. Biology and Fertility of Soils, 2014, 50, 1129-1140.	2.3	4
212	Prior exposure to diurnal heating influences soil respiration and N availability upon rewetting. Biology and Fertility of Soils, 2017, 53, 715-721.	2.3	4
213	Respiration, microbial biomass and nutrient availability are influenced by previous and current soil water content in plant residue amended soil. Journal of Soil Science and Plant Nutrition, 2018, , 0-0.	1.7	4
214	Influence of mulch C/N ratio and decomposition stage on plant N uptake and N availability in soil with or without wheat straw. Journal of Plant Nutrition and Soil Science, 2019, 182, 879-887.	1.1	4
215	Vermicompost Influences Soil P Pools and Available N—Effect of Placement and Combination with Inorganic Fertiliser. Journal of Soil Science and Plant Nutrition, 2019, 19, 900-905.	1.7	4
216	Wheat Growth-Induced Changes in Phosphorus Pools in the Crop Residue Detritusphere Are Influenced by Residue C/P Ratio. Journal of Soil Science and Plant Nutrition, 2020, 20, 2579-2586.	1.7	4

#	Article	IF	CITATIONS
217	Phosphorus and nitrogen in the soil interface between two plant residues differing in C/nutrient ratio: A short-term laboratory incubation study. Soil Ecology Letters, 2020, 2, 188-194.	2.4	4
218	Plant residues differing in C/N ratio in mulch and soil — the effect of the mulch on nutrient availability and microbial biomass is more pronounced with higher leaching amount. Soil Ecology Letters, 2020, 2, 317-326.	2.4	4
219	Impact of Heating and Rewetting on Soil Respiration and Nutrient Availability Is Enhanced by Prior Growth of Plants. Journal of Soil Science and Plant Nutrition, 2020, 20, 925-932.	1.7	4
220	Rewetting Intensity Influences Soil Respiration and Nitrogen Availability. Journal of Soil Science and Plant Nutrition, 2021, 21, 2137-2144.	1.7	4
221	Direction and magnitude of the change in water content between two periods influence soil respiration, microbial biomass and nutrient availability which can be modified by intermittent air-drying. Soil Biology and Biochemistry, 2022, 166, 108559.	4.2	4
222	Addition of glucose increases the activity of microbes in saline soils. Soil Research, 2014, 52, 568.	0.6	3
223	Effects of Different Rates of Ca2+Addition on Respiration and Sorption of Water-Extractable Organic C to a Vertisol Subsoil. Communications in Soil Science and Plant Analysis, 2015, 46, 185-194.	0.6	3
224	Low soil water content during plant growth influences soil respiration and microbial biomass after plant removal and rewetting. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	1.7	3
225	Legacy effect of previous residue addition—influence of length of the moist period between residue additions on soil respiration, microbial biomass and nutrient availability. Biology and Fertility of Soils, 2016, 52, 1047-1057.	2.3	3
226	Soil respiration and nutrient availability after short heating followed by rewetting differ between first and second heating and are influenced by the interval between heating events. Soil Biology and Biochemistry, 2019, 136, 107537.	4.2	3
227	Effect of Short-term Irrigation of Wastewater on Wheat Growth and Nitrogen and Phosphorus in Soil. Journal of Soil Science and Plant Nutrition, 2020, 20, 1589-1595.	1.7	3
228	Addition of wheat straw to acid sulfate soils with different clay contents reduces acidification in two consecutive submerged-moist cycles. Geoderma, 2021, 385, 114892.	2.3	3
229	Rapid remediation of sandy sulfuric subsoils using straw-derived dissolved organic matter. Geoderma, 2022, 420, 115875.	2.3	3
230	Response of microbial activity and biomass to soil salinity when supplied with glucose and cellulose. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	1.7	2
231	Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release. Environmental Science and Pollution Research, 2016, 23, 23582-23592.	2.7	2
232	Addition of clayey soils with high net negative acidity to sulfuric sandy soil can minimise pH changes during wet and dry periods. Geoderma, 2016, 269, 153-159.	2.3	2
233	Repeated rainfall in summer induces prolonged high soil respiration in a semiâ€arid floodplain woodland. Ecohydrology, 2018, 11, e1984.	1.1	2
234	P Pools in Barley Detritusphere Are Influenced by N and P Addition to the Soil. Journal of Soil Science and Plant Nutrition, 2019, 19, 463-468.	1.7	2

#	Article	IF	CITATIONS
235	The Effects of Plant Breeding on Soil Microbes. , 2010, , 297-314.		2
236	Growth and Water Use Efficiency ofCapsicum annuumin a Silt Loam Soil Treated Three Years Previously With a Single Compost Application and Repeatedly Dried. International Journal of Vegetable Science, 2014, 20, 187-196.	0.6	1
237	Changes in P pools over three months in two soils amended with legume residues. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	1.7	1
238	Effect of residue mixtures on response of cumulative respiration to salinity. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	1.7	1
239	The Size of P Pools in Soils is Affected by Soil Properties and Compost Addition. Communications in Soil Science and Plant Analysis, 2016, 47, 1317-1328.	0.6	1
240	Residue addition frequency influences respiration, microbial biomass and nutrient availability in soil amended with high and low C/N residue. Journal of Soil Science and Plant Nutrition, 2017, , 0-0.	1.7	1
241	Amendment type and Time of Addition Influence the Effect of Short-term Heating on Soil Respiration and Nutrient Availability. Journal of Soil Science and Plant Nutrition, 2020, 20, 431-438.	1.7	1
242	Response of Soil Respiration and Microbial Biomass to Drying and Rewetting Is Greater in Planted than in Unplanted Soil. Journal of Soil Science and Plant Nutrition, 2021, 21, 2765-2769.	1.7	1
243	Response of microbial activity to labile C addition in sandy soil from semi-arid woodland is influenced by vegetation patch and wildfire. Journal of Soil Science and Plant Nutrition, 2017, , 0-0.	1.7	1
244	Influence of clay concentration, residue C/N and particle size on microbial activity and nutrient availability in clay-amended sandy soil. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	1.7	1
245	Time between two partial rewetting events influences the respiration flush and microbial growth after the final rewetting. Biology and Fertility of Soils, 0, , 1.	2.3	1
246	Multiple additions of rapidly decomposable residue alleviate the negative impact of salinity on microbial activity. Soil Research, 2016, 54, 692.	0.6	0
247	Watering Frequency and Total Water Input Influence Wheat Growth, Soil Microbial Biomass and Nutrient Availability in a Silt Loam. Communications in Soil Science and Plant Analysis, 2018, 49, 380-388.	0.6	0
248	Amendment with high and low C/N residues- Influence of rate, order and frequency. Journal of Soil Science and Plant Nutrition, 2018, , 0-0.	1.7	0
249	Wheat straw decomposition stage has little effect on the removal of inorganic N and P from wastewater leached through sand-straw mixes. Environmental Technology (United Kingdom), 2020, 41, 3483-3492.	1.2	0
250	Soil respiration and nutrient availability after heating are influenced by salinity but not by prior drying and rewetting. Biology and Fertility of Soils, 2020, 56, 663-673.	2.3	0
251	Addition of Clayey Soil to Sandy Soil Increases Sorption of Water-Extractable Organic C But Also Its Release. Journal of Soil Science and Plant Nutrition, 0, , 1.	1.7	0