Richard M Amasino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8649938/publications.pdf

Version: 2024-02-01

103 papers 18,555 citations

64 h-index 98 g-index

154 all docs

154 docs citations

154 times ranked 11791 citing authors

#	Article	IF	CITATIONS
1	Broadening the impact of plant science through innovative, integrative, and inclusive outreach. Plant Direct, 2021, 5, e00316.	0.8	14
2	EARLY FLOWERING 3 and Photoperiod Sensing in Brachypodium distachyon. Frontiers in Plant Science, 2021, 12, 769194.	1.7	14
3	Mutations in the predicted DNA polymerase subunit POLD3 result in more rapid flowering of <i>Brachypodium distachyon</i> . New Phytologist, 2020, 227, 1725-1735.	3.5	6
4	Genetic and genomic resources to study natural variation in <i>Brassica rapa</i> . Plant Direct, 2020, 4, e00285.	0.8	8
5	A florigen paralog is required for short-day vernalization in a pooid grass. ELife, 2019, 8, .	2.8	28
6	An ortholog of <i><scp>CURLY LEAF</scp>/<scp>ENHANCER OF ZESTE</scp> likeâ€1</i> is required for proper flowering in <i>Brachypodium distachyon</i> Plant Journal, 2018, 93, 871-882.	2.8	25
7	A path to a biennial life history. Nature Plants, 2018, 4, 752-753.	4.7	4
8	Focus on Flowering and Reproduction. Plant Physiology, 2017, 173, 1-4.	2.3	15
9	Elevating the conversation about GE crops. Nature Biotechnology, 2017, 35, 302-304.	9.4	6
10	Establishment of a vernalization requirement in <i>Brachypodium distachyon</i> requires <i>REPRESSOR OF VERNALIZATION1</i> Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6623-6628.	3.3	41
11	Genetic Architecture of Flowering-Time Variation in <i>Brachypodium distachyon</i> Plant Physiology, 2017, 173, 269-279.	2.3	40
12	Winter Memory throughout the Plant Kingdom: Different Paths to Flowering. Plant Physiology, 2017, 173, 27-35.	2.3	127
13	Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nature Communications, 2017, 8, 2184.	5.8	269
14	Variation in shade-induced flowering in Arabidopsis thaliana results from FLOWERING LOCUS T allelic variation. PLoS ONE, 2017, 12, e0187768.	1.1	7
15	Evolution of <i>VRN2/Ghd7-</i> Like Genes in Vernalization-Mediated Repression of Grass Flowering. Plant Physiology, 2016, 170, 2124-2135.	2.3	82
16	A methyltransferase required for proper timing of the vernalization response in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2269-2274.	3.3	43
17	Memory of the vernalized state in plants including the model grass Brachypodium distachyon. Frontiers in Plant Science, 2014, 5, 99.	1.7	27
18	PHYTOCHROME C Is an Essential Light Receptor for Photoperiodic Flowering in the Temperate Grass, <i>Brachypodium distachyon</i> . Genetics, 2014, 198, 397-408.	1.2	70

#	Article	IF	CITATIONS
19	Interaction of Photoperiod and Vernalization Determines Flowering Time of <i>Brachypodium distachyon </i> \hat{A} \hat{A} \hat{A} \hat{A} . Plant Physiology, 2014, 164, 694-709.	2.3	109
20	<pre><scp>O</scp>s<scp>VIL</scp>2 functions with <scp>PRC</scp>2 to induce flowering by repressing <scp><i>O</i></scp><i>EFLII<i>I<i>I<i>I</i></i></i></i></pre>	2.8	99
21	Two FLX family members are non-redundantly required to establish the vernalization requirement in Arabidopsis. Nature Communications, 2013, 4, 2186.	5.8	17
22	My favourite flowering image: Maryland Mammoth tobacco. Journal of Experimental Botany, 2013, 64, 5817-5818.	2.4	4
23	ARABIDOPSIS TRITHORAX-RELATED3/SET DOMAIN GROUP2 is Required for the Winter-Annual Habit of Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 834-846.	1.5	58
24	Natural variation in the temperature range permissive for vernalization in accessions of <i>Arabidopsis thaliana </i> . Plant, Cell and Environment, 2012, 35, 2181-2191.	2.8	44
25	Brahma Is Required for Proper Expression of the Floral Repressor FLC in Arabidopsis. PLoS ONE, 2011, 6, e17997.	1.1	50
26	Polycomb proteins regulate the quantitative induction of <i>VERNALIZATION INSENSITIVE 3</i> in response to low temperatures. Plant Journal, 2011, 65, 382-391.	2.8	38
27	Natural Variation of Flowering Time and Vernalization Responsiveness in Brachypodium distachyon. Bioenergy Research, 2010, 3, 38-46.	2.2	68
28	Growth habit determination by the balance of histone methylation activities in Arabidopsis. EMBO Journal, 2010, 29, 3208-3215.	3.5	95
29	Seasonal and developmental timing of flowering. Plant Journal, 2010, 61, 1001-1013.	2.8	713
30	The Timing of Flowering. Plant Physiology, 2010, 154, 516-520.	2.3	338
31	Major flowering time gene, <i>FLOWERING LOCUS C</i> , regulates seed germination in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11661-11666.	3.3	263
32	<i>ARABIDOPSIS TRITHORAX-RELATED7</i> Is Required for Methylation of Lysine 4 of Histone H3 and for Transcriptional Activation of <i>FLOWERING LOCUS C</i> ÂÂ. Plant Cell, 2009, 21, 3257-3269.	3.1	182
33	A Single Amino Acid Change in the Enhancer of Zeste Ortholog CURLY LEAF Results in Vernalization-Independent, Rapid Flowering in Arabidopsis. Plant Physiology, 2009, 151, 1688-1697.	2.3	71
34	The RNA Binding Protein ELF9 Directly Reduces SUPPRESSOR OF OVEREXPRESSION OF CO1 Transcript Levels in Arabidopsis, Possibly via Nonsense-Mediated mRNA Decay. Plant Cell, 2009, 21, 1195-1211.	3.1	29
35	Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theoretical and Applied Genetics, 2009, 120, 31-43.	1.8	94
36	Resetting and regulation of <i>FLOWERING LOCUS C</i> expression during Arabidopsis reproductive development. Plant Journal, 2009, 57, 918-931.	2.8	144

#	Article	IF	CITATIONS
37	Vernalization: Winter and the Timing of Flowering in Plants. Annual Review of Cell and Developmental Biology, 2009, 25, 277-299.	4.0	507
38	Floral induction and monocarpic versus polycarpic life histories. Genome Biology, 2009, 10, 228.	13.9	41
39	Acceleration of Flowering during Shade Avoidance in Arabidopsis Alters the Balance between <i>FLOWERING LOCUS C</i> -Mediated Repression and Photoperiodic Induction of Flowering Â. Plant Physiology, 2008, 148, 1681-1694.	2.3	101
40	Histone arginine methylation is required for vernalization-induced epigenetic silencing of <i>FLC</i> in winter-annual <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 411-416.	3.3	115
41	<i>Arabidopsis</i> Relatives of the Human Lysine-Specific Demethylase 1 Repress the Expression of <i>FWA</i> and <i>FLOWERING LOCUS C</i> and Thus Promote the Floral Transition. Plant Cell, 2007, 19, 2975-2987.	3.1	220
42	The Role of VIN3-LIKE Genes in Environmentally Induced Epigenetic Regulation of Flowering. Plant Signaling and Behavior, 2007, 2, 127-128.	1.2	10
43	Evolutionary Conservation of the FLOWERING LOCUS C-Mediated Vernalization Response: Evidence From the Sugar Beet (Beta vulgaris). Genetics, 2007, 176, 295-307.	1.2	142
44	DICER-LIKE 1 and DICER-LIKE 3 Redundantly Act to Promote Flowering via Repression of FLOWERING LOCUS C in Arabidopsis thaliana. Genetics, 2007, 176, 1359-1362.	1.2	61
45	Vernalization: A model for investigating epigenetics and eukaryotic gene regulation in plants. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 269-275.	2.4	106
46	The WiscDsLox T-DNA collection: an arabidopsis community resource generated by using an improved high-throughput T-DNA sequencing pipeline. Journal of Plant Research, 2007, 120, 157-165.	1.2	132
47	Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nature Genetics, 2006, 38, 706-710.	9.4	309
48	FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways. BMC Plant Biology, 2006, 6, 10.	1.6	50
49	Molecular genetic studies of the memory of winter. Journal of Experimental Botany, 2006, 57, 3369-3377.	2.4	61
50	A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes and Development, 2006, 20, 3244-3248.	2.7	224
51	<i>HUA2</i> is required for the expression of floral repressors in <i>Arabidopsis thaliana</i> Journal, 2005, 41, 376-385.	2.8	75
52	Vernalization and flowering time. Current Opinion in Biotechnology, 2005, 16, 154-158.	3.3	114
53	1955: Kinetin Arrives. The 50th Anniversary of a New Plant Hormone. Plant Physiology, 2005, 138, 1177-1184.	2.3	80
54	FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana. Development (Cambridge), 2005, 132, 5471-5478.	1.2	85

#	Article	IF	CITATIONS
55	Establishment of the Vernalization-Responsive, Winter-Annual Habit in Arabidopsis Requires a Putative Histone H3 Methyl Transferase[W]. Plant Cell, 2005, 17, 3301-3310.	3.1	203
56	Integration of Flowering Signals in Winter-Annual Arabidopsis. Plant Physiology, 2005, 137, 149-156.	2.3	281
57	Role of chromatin modification in flowering-time control. Trends in Plant Science, 2005, 10, 30-35.	4.3	281
58	REMEMBERING WINTER: Toward a Molecular Understanding of Vernalization. Annual Review of Plant Biology, 2005, 56, 491-508.	8.6	219
59	Senescence and Genetic Engineering. , 2004, , 91-105.		2
60	FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3281-3285.	3.3	171
61	Divergent Roles of a Pair of Homologous Jumonji/Zinc-Finger–Class Transcription Factor Proteins in the Regulation of Arabidopsis Flowering Time. Plant Cell, 2004, 16, 2601-2613.	3.1	246
62	EARLY FLOWERING 5acts as a floral repressor in Arabidopsis. Plant Journal, 2004, 38, 664-672.	2.8	35
63	Lesions in the mRNA cap-binding gene ABA HYPERSENSITIVE 1 suppress FRIGIDA-mediated delayed flowering in Arabidopsis. Plant Journal, 2004, 40, 112-119.	2.8	98
64	Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 2004, 427, 159-164.	13.7	793
65	Vernalization and epigenetics: how plants remember winter. Current Opinion in Plant Biology, 2004, 7, 4-10.	3.5	286
66	PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes and Development, 2004, 18, 2774-2784.	2.7	302
67	Vernalization, Competence, and the Epigenetic Memory of Winter. Plant Cell, 2004, 16, 2553-2559.	3.1	191
68	Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana. Plant Molecular Biology, 2003, 52, 915-922.	2.0	103
69	Flowering time: a pathway that begins at the 3′ end. Current Biology, 2003, 13, R670-R672.	1.8	9
70	AGL24acts as a promoter of flowering inArabidopsisand is positively regulated by vernalization. Plant Journal, 2003, 33, 867-874.	2.8	298
71	Regulation of Flowering Time by Histone Acetylation in Arabidopsis. Science, 2003, 302, 1751-1754.	6.0	459
72	Overexpression of a Novel Class of Gibberellin 2-Oxidases Decreases Gibberellin Levels and Creates Dwarf Plants. Plant Cell, 2003, 15, 151-163.	3.1	362

#	Article	IF	Citations
73	PIE1, an ISWI Family Gene, Is Required for FLC Activation and Floral Repression in Arabidopsis. Plant Cell, 2003, 15, 1671-1682.	3.1	254
74	Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10102-10107.	3.3	316
75	The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature, 2002, 419, 74-77.	13.7	436
76	High throughput isolation of DNA and RNA in 96-well format using a paint shaker. Plant Molecular Biology Reporter, 2001, 19, 227-233.	1.0	12
77	Gibberellin response mutants identified by luciferase imaging. Plant Journal, 2001, 25, 509-519.	2.8	67
78	Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. Plant Journal, 2001, 26, 229-236.	2.8	253
79	<i>FPA</i> , a Gene Involved in Floral Induction in Arabidopsis, Encodes a Protein Containing RNA-Recognition Motifs. Plant Cell, 2001, 13, 1427-1436.	3.1	193
80	Loss of FLOWERING LOCUS C Activity Eliminates the Late-Flowering Phenotype of FRIGIDA and Autonomous Pathway Mutations but Not Responsiveness to Vernalization. Plant Cell, 2001, 13, 935-941.	3.1	521
81	Senescence Is Induced in Individually Darkened Arabidopsis Leaves, but Inhibited in Whole Darkened Plants. Plant Physiology, 2001, 127, 876-886.	2.3	255
82	Characterization of a gene from Zea mays related to the Arabidopsis flowering-time gene LUMINIDEPENDENS. Plant Molecular Biology, 2000, 44, 107-122.	2.0	31
83	Molecular Analysis of FRIGIDA, a Major Determinant of Natural Variation in Arabidopsis Flowering Time. Science, 2000, 290, 344-347.	6.0	952
84	The Arabidopsis Knockout Facility at the University of Wisconsin–Madison: Fig. 1 Plant Physiology, 2000, 124, 1465-1467.	2.3	189
85	FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. Plant Cell, 1999, 11, 949-956.	3.1	1,803
86	The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant Journal, 1999, 18, 195-203.	2.8	90
87	Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant Journal, 1999, 20, 67-77.	2.8	171
88	Markers for hypersensitive response and senescence show distinct patterns of expression. Plant Molecular Biology, 1999, 39, 1243-1255.	2.0	198
89	Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Molecular Biology, 1999, 40, 267-278.	2.0	283
90	Identification of a promoter region responsible for the senescence-specific expression of SAG12. , 1999, 41, 181-194.		318

#	Article	IF	Citations
91	Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus. , 1999, 41, 195-206.		90
92	The gibberellic acid biosynthesis mutantga 1 - 3 of Arabidopsis thaliana is responsive to vernalization., $1999, 25, 194-198$.		43
93	A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Molecular Biology, 1998, 37, 455-469.	2.0	550
94	A robust method for detecting singleâ€nucleotide changes as polymorphic markers by PCR. Plant Journal, 1998, 14, 381-385.	2.8	179
95	Identification of a Functional Homolog of the Yeast Copper Homeostasis Gene ATX1 from Arabidopsis1. Plant Physiology, 1998, 117, 1227-1234.	2.3	190
96	Leaf Senescence: Gene Expression and Regulation. , 1997, , 215-234.		35
97	Control of flowering time in plants. Current Opinion in Genetics and Development, 1996, 6, 480-487.	1.5	61
98	Cytokinins in plant senescence: From spray and pray to clone and play. BioEssays, 1996, 18, 557-565.	1.2	145
99	The late-flowering phenotype of FRIGIDA and mutations in LUMINIDEPENDENS is suppressed in the Landsberg erecta strain of Arabidopsis. Plant Journal, 1994, 6, 903-909.	2.8	248
100	Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiologia Plantarum, 1994, 92, 322-328.	2.6	451
101	Analysis of naturally occurring late flowering in Arabidopsis thaliana. Molecular Genetics and Genomics, 1993, 237-237, 171-176.	2.4	144
102	Rapid induction of genomic demethylation and T-DNA gene expression in plant cells by 5-azacytosine derivatives. Plant Molecular Biology, 1989, 12, 413-423.	2.0	53
103	Introduction to Developmental Traits. , 0, , .		O