
Juan BarcelÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8649810/publications.pdf Version: 2024-02-01

Ιμανι Βαρςεί Δ3

#	Article	IF	CITATIONS
1	Evolution of salt tolerance in Arabidopsis thaliana on siliceous soils does not confer tolerance to saline calcareous soils. Plant and Soil, 2022, 476, 455-475.	3.7	4
2	Luxury zinc supply acts as antiaging agent and enhances reproductive fitness in Arabidopsis thaliana. Plant Science, 2021, 304, 110805.	3.6	1
3	Snails prefer it sweet: A multifactorial test of the metal defence hypothesis. Physiologia Plantarum, 2019, 165, 209-218.	5.2	5
4	How Plants Handle Trivalent (+3) Elements. International Journal of Molecular Sciences, 2019, 20, 3984.	4.1	30
5	A proteomic approach to the mechanisms underlying activation of aluminium resistance in roots of Urochloa decumbens. Journal of Inorganic Biochemistry, 2018, 181, 145-151.	3.5	15
6	Transport and Use of Bicarbonate in Plants: Current Knowledge and Challenges Ahead. International Journal of Molecular Sciences, 2018, 19, 1352.	4.1	71
7	Zinc hyperaccumulation substitutes for defense failures beyond salicylate and jasmonate signaling pathways of <i>Alternaria brassicicola</i> attack in <i>Noccaea caerulescens</i> . Physiologia Plantarum, 2017, 159, 401-415.	5.2	27
8	A highly versatile and easily configurable system for plant electrophysiology. MethodsX, 2016, 3, 436-451.	1.6	8
9	Zinc triggers signaling mechanisms and defense responses promoting resistance to Alternaria brassicicola in Arabidopsis thaliana. Plant Science, 2016, 249, 13-24.	3.6	38
10	Differential activation of genes related to aluminium tolerance in two contrasting rice cultivars. Journal of Inorganic Biochemistry, 2015, 152, 160-166.	3.5	27
11	Both aluminum and ABA induce the expression of an ABC-like transporter gene (FeALS3) in the Al-tolerant species Fagopyrum esculentum. Environmental and Experimental Botany, 2015, 111, 74-82.	4.2	54
12	Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant, Cell and Environment, 2014, 37, 2216-2233.	5.7	130
13	Fractionation of chromium in tannery sludge-amended soil and its availability to fenugreek plants. Journal of Soils and Sediments, 2014, 14, 697-702.	3.0	22
14	Lessons from crop plants struggling with salinity. Plant Science, 2014, 226, 2-13.	3.6	129
15	Do toxic ions induce hormesis in plants?. Plant Science, 2013, 212, 15-25.	3.6	219
16	Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. Planta, 2013, 237, 337-349.	3.2	70
17	Differential aluminum resistance in Brachiaria species. Environmental and Experimental Botany, 2013, 89, 11-18.	4.2	35
18	Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. Journal of Geochemical Exploration, 2012, 113, 106-111.	3.2	65

Juan BarcelÃ³

#	Article	IF	CITATIONS
19	Cynara cardunculus a potentially useful plant for remediation of soils polluted with cadmium or arsenic. Journal of Geochemical Exploration, 2012, 123, 122-127.	3.2	49
20	Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation. Journal of Geochemical Exploration, 2012, 123, 109-113.	3.2	62
21	Aluminium-induced changes in root epidermal cell patterning, a distinctive feature of hyperresistance to Al in Brachiaria decumbens. Journal of Inorganic Biochemistry, 2011, 105, 1477-1483.	3.5	41
22	Hyperaccumulation of trace elements: from uptake and tolerance mechanisms to litter decomposition; selenium as an example. Plant and Soil, 2011, 341, 31-35.	3.7	26
23	At the Crossroads of Metal Hyperaccumulation and Glucosinolates: Is There Anything Out There?. Soil Biology, 2010, , 139-161.	0.8	6
24	Different Effects of Aluminum on the Actin Cytoskeleton and Brefeldin A-Sensitive Vesicle Recycling in Root Apex Cells of Two Maize Varieties Differing in Root Elongation Rate and Aluminum Tolerance. Plant and Cell Physiology, 2009, 50, 528-540.	3.1	84
25	Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environmental and Experimental Botany, 2009, 67, 243-259.	4.2	340
26	Sodiumâ€calcium interactions with growth, water, and photosynthetic parameters in saltâ€ŧreated beans. Journal of Plant Nutrition and Soil Science, 2009, 172, 637-643.	1.9	21
27	Glucosinolate Profiles Change During the Life Cycle and Mycorrhizal Colonization in a Cd/Zn Hyperaccumulator Thlaspi praecox (Brassicaceae). Journal of Chemical Ecology, 2008, 34, 1038-1044.	1.8	27
28	A glance into aluminum toxicity and resistance in plants. Science of the Total Environment, 2008, 400, 356-368.	8.0	349
29	Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. Journal of Plant Physiology, 2008, 165, 504-513.	3.5	80
30	Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere, 2007, 69, 1602-1609.	8.2	50
31	Can metals defend plants against biotic stress?. Trends in Plant Science, 2006, 11, 288-295.	8.8	228
32	Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense. Plant and Soil, 2006, 288, 333-341.	3.7	69
33	Root cell patterning: a primary target for aluminium toxicity in maize. Journal of Experimental Botany, 2005, 56, 1213-1220.	4.8	211
34	Title is missing!. Plant and Soil, 2003, 251, 55-63.	3.7	52
35	Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environmental and Experimental Botany, 2002, 48, 75-92.	4.2	823
36	Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens. New Phytologist, 2001, 151, 621-626.	7.3	71

Juan BarcelÃ³

#	Article	IF	CITATIONS
37	Title is missing!. Plant and Soil, 2001, 230, 247-256.	3.7	85
38	Determination of glucosinolates in rapeseed and Thlaspi caerulescens plants by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A, 2000, 889, 75-81.	3.7	47
39	Influence of silicon pretreatment on aluminium toxicity in maize roots. Plant and Soil, 1997, 190, 203-209.	3.7	68
40	Zinc hyperaccumulation in Thlaspi caerulescens. I. Influence on growth and mineral nutrition. Journal of Plant Nutrition, 1996, 19, 1531-1540.	1.9	49
41	Beneficial and Toxic Effects of Chromium in Plants: Solution Culture, Pot and Field Studies Studies in Environmental Science, 1993, , 147-171.	0.0	29