Yuewen Sheng

List of Publications by Citations

Source: https://exaly.com/author-pdf/8649657/yuewen-sheng-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,088 41 23 31 h-index g-index citations papers 12.1 41 1,394 4.45 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
41	Lateral Graphene-Contacted Vertically Stacked WS /MoS Hybrid Photodetectors with Large Gain. <i>Advanced Materials</i> , 2017 , 29, 1702917	24	87
40	Revealing Defect-State Photoluminescence in Monolayer WS2 by Cryogenic Laser Processing. <i>ACS Nano</i> , 2016 , 10, 5847-55	16.7	72
39	High Photoresponsivity in Ultrathin 2D Lateral Graphene:WS:Graphene Photodetectors Using Direct CVD Growth. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 6421-6430	9.5	52
38	Photoluminescence Segmentation within Individual Hexagonal Monolayer Tungsten Disulfide Domains Grown by Chemical Vapor Deposition. <i>ACS Applied Materials & Domains &</i>	180514	48
37	Biexciton Formation in Bilayer Tungsten Disulfide. <i>ACS Nano</i> , 2016 , 10, 2176-83	16.7	46
36	Growth of Large Single-Crystalline Monolayer Hexagonal Boron Nitride by Oxide-Assisted Chemical Vapor Deposition. <i>Chemistry of Materials</i> , 2017 , 29, 6252-6260	9.6	46
35	Field-Effect Control of Graphene-Fullerene Thermoelectric Nanodevices. <i>Nano Letters</i> , 2017 , 17, 7055-7	7 0:6:1 5	41
34	Layer-dependent modulation of tungsten disulfide photoluminescence by lateral electric fields. <i>ACS Nano</i> , 2015 , 9, 2740-8	16.7	39
33	Distinguishing Lead and Molecule States in Graphene-Based Single-Electron Transistors. <i>ACS Nano</i> , 2017 , 11, 5325-5331	16.7	36
32	Hydrogen Addition for Centimeter-Sized Monolayer Tungsten Disulfide Continuous Films by Ambient Pressure Chemical Vapor Deposition. <i>Chemistry of Materials</i> , 2017 , 29, 4904-4911	9.6	36
31	Hydrogen-Assisted Growth of Large-Area Continuous Films of MoS on Monolayer Graphene. <i>ACS Applied Materials & District Materials & Dis</i>	9.5	36
30	Oligomeric aminoborane precursors for the chemical vapour deposition growth of few-layer hexagonal boron nitride. <i>CrystEngComm</i> , 2017 , 19, 285-294	3.3	34
29	High-Performance WS Monolayer Light-Emitting Tunneling Devices Using 2D Materials Grown by Chemical Vapor Deposition. <i>ACS Nano</i> , 2019 , 13, 4530-4537	16.7	34
28	Geometrically Enhanced Thermoelectric Effects in Graphene Nanoconstrictions. <i>Nano Letters</i> , 2018 , 18, 7719-7725	11.5	30
27	Direct Laser Patterning and Phase Transformation of 2D PdSe Films for On-Demand Device Fabrication. <i>ACS Nano</i> , 2019 , 13, 14162-14171	16.7	29
26	Electroluminescence Dynamics across Grain Boundary Regions of Monolayer Tungsten Disulfide. <i>ACS Nano</i> , 2016 , 10, 1093-100	16.7	26
25	Utilizing Interlayer Excitons in Bilayer WS for Increased Photovoltaic Response in Ultrathin Graphene Vertical Cross-Bar Photodetecting Tunneling Transistors. <i>ACS Nano</i> , 2018 , 12, 4669-4677	16.7	25

24	MoS Liquid Cell Electron Microscopy Through Clean and Fast Polymer-Free MoS Transfer. <i>Nano Letters</i> , 2019 , 19, 1788-1795	11.5	24
23	Mixed multilayered vertical heterostructures utilizing strained monolayer WS2. <i>Nanoscale</i> , 2016 , 8, 2639	9 7 47	24
22	Chemical Vapor Deposition Growth of Two-Dimensional Monolayer Gallium Sulfide Crystals Using Hydrogen Reduction of GaS. <i>ACS Omega</i> , 2018 , 3, 7897-7903	3.9	24
21	Controlling Defects in Continuous 2D GaS Films for High-Performance Wavelength-Tunable UV-Discriminating Photodetectors. <i>Advanced Materials</i> , 2020 , 32, e1906958	24	24
20	Correlative multi-scale cryo-imaging unveils SARS-CoV-2 assembly and egress. <i>Nature Communications</i> , 2021 , 12, 4629	17.4	24
19	High-Performance All 2D-Layered Tin Disulfide: Graphene Photodetecting Transistors with Thickness-Controlled Interface Dynamics. <i>ACS Applied Materials & Dynamics amp; Interfaces</i> , 2018 , 10, 13002-13010	0 ^{9.5}	23
18	Symmetry-Controlled Reversible Photovoltaic Current Flow in Ultrathin All 2D Vertically Stacked Graphene/MoS/WS/Graphene Devices. <i>ACS Applied Materials & Devices</i> , 2019 , 11, 2234-2242	9.5	23
17	Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene. <i>Nature Communications</i> , 2020 , 11, 823	17.4	20
16	Self-Limiting Growth of High-Quality 2D Monolayer MoS2 by Direct Sulfurization Using Precursor-Soluble Substrates for Advanced Field-Effect Transistors and Photodetectors. <i>ACS Applied Nano Materials</i> , 2019 , 2, 369-378	5.6	20
15	Ultrathin All-2D Lateral Graphene/GaS/Graphene UV Photodetectors by Direct CVD Growth. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Appl</i>	9.5	19
14	Revealing Strain-Induced Effects in Ultrathin Heterostructures at the Nanoscale. <i>Nano Letters</i> , 2018 , 18, 2467-2474	11.5	17
13	Uniformity of large-area bilayer graphene grown by chemical vapor deposition. <i>Nanotechnology</i> , 2015 , 26, 395601	3.4	17
12	High-Performance Two-Dimensional Schottky Diodes Utilizing Chemical Vapour Deposition-Grown Graphene-MoS Heterojunctions. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 37258-37266	9.5	17
11	Low-Frequency Noise in Graphene Tunnel Junctions. <i>ACS Nano</i> , 2018 , 12, 9451-9460	16.7	15
10	2D-Layer-Dependent Behavior in Lateral Au/WS2/Graphene Photodiode Devices with Optical Modulation of Schottky Barriers. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6874-6881	5.6	14
9	Postgrowth Substitutional Tin Doping of 2D WS Crystals Using Chemical Vapor Deposition. <i>ACS Applied Materials & Applied & App</i>	9.5	13
8	Morphology Control of Two-Dimensional Tin Disulfide on Transition Metal Dichalcogenides Using Chemical Vapor Deposition for Nanoelectronic Applications. <i>ACS Applied Nano Materials</i> , 2019 , 2, 4222-4	4 2 31	12
7	Inhomogeneous Strain Release during Bending of WS on Flexible Substrates. <i>ACS Applied Materials</i> & amp; Interfaces, 2018 , 10, 39177-39186	9.5	9

6	Metal Atom Markers for Imaging Epitaxial Molecular Self-Assembly on Graphene by Scanning Transmission Electron Microscopy. <i>ACS Nano</i> , 2019 , 13, 7252-7260	16.7	8
5	Photocurrent Direction Control and Increased Photovoltaic Effects in All-2D Ultrathin Vertical Heterostructures Using Asymmetric h-BN Tunneling Barriers. <i>ACS Applied Materials & Materials & Interfaces</i> , 2019 , 11, 40274-40282	9.5	7
4	GaS:WS Heterojunctions for Ultrathin Two-Dimensional Photodetectors with Large Linear Dynamic Range across Broad Wavelengths. <i>ACS Nano</i> , 2021 ,	16.7	7
3	In Situ Atomic-Level Studies of Gd Atom Release and Migration on Graphene from a Metallofullerene Precursor. <i>ACS Nano</i> , 2018 , 12, 10439-10451	16.7	6
2	High-resolution in situ structure determination by cryo-electron tomography and subtomogram averaging using emClarity <i>Nature Protocols</i> , 2022 ,	18.8	3
1	Transparent ultrathin all-two-dimensional lateral Gr:WS2:Gr photodetector arrays on flexible substrates and their strain induced failure mechanisms. <i>Materials Today Advances</i> , 2020 , 6, 100067	7.4	1