

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8649193/publications.pdf Version: 2024-02-01

SHEDDY Δ\

#	Article	IF	CITATIONS
1	Fully Automated Leg Tracking in Freely Moving Insects using Feature Learning Leg Segmentation and Tracking (FLLIT). Journal of Visualized Experiments, 2020, , .	0.3	1
2	Fully automated leg tracking of Drosophila neurodegeneration models reveals distinct conserved movement signatures. PLoS Biology, 2019, 17, e3000346.	5.6	16
3	A Glio-Protective Role of mir-263a by Tuning Sensitivity to Glutamate. Cell Reports, 2017, 19, 1783-1793.	6.4	16
4	A conformation-induced fluorescence method for microRNA detection. Nucleic Acids Research, 2016, 44, e92-e92.	14.5	46
5	The <scp>SCF</scp> ^{Slimb} E3 ligase complex regulates asymmetric division to inhibit neuroblast overgrowth. EMBO Reports, 2014, 15, 165-174.	4.5	17
6	The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages. ELife, 2014, 3, e01906.	6.0	60
7	Time is of the essence: microRNAs and age-associated neurodegeneration. Cell Research, 2012, 22, 1218-1220.	12.0	14
8	Transmembrane voltage potential controls embryonic eye patterning in <i>Xenopus laevis</i> . Development (Cambridge), 2012, 139, 313-323.	2.5	156
9	The ATP-sensitive K+-channel (KATP) controls early left–right patterning in Xenopus and chick embryos. Developmental Biology, 2010, 346, 39-53.	2.0	49
10	Is left-right asymmetry a form of planar cell polarity?. Development (Cambridge), 2009, 136, 355-366.	2.5	60
11	What's left in asymmetry?. Developmental Dynamics, 2008, 237, 3453-3463.	1.8	32
12	H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left–right asymmetry. Mechanisms of Development, 2008, 125, 353-372.	1.7	82