Willem L Vos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8649113/publications.pdf

Version: 2024-02-01

238 papers 11,230 citations

50 h-index 95 g-index

242 all docs 242 docs citations

times ranked

242

9326 citing authors

#	Article	IF	CITATIONS
1	Preparation of Photonic Crystals Made of Air Spheres in Titania. , 1998, 281, 802-804.		1,544
2	Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 2004, 430, 654-657.	13.7	1,089
3	Non-invasive imaging through opaque scattering layers. Nature, 2012, 491, 232-234.	13.7	882
4	NovelH2-H2O clathrates at high pressures. Physical Review Letters, 1993, 71, 3150-3153.	2.9	284
5	Broadâ€band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods. Advanced Materials, 2009, 21, 973-978.	11.1	243
6	Scattering Lens Resolves Sub-100Ânm Structures with Visible Light. Physical Review Letters, 2011, 106, 193905.	2.9	243
7	Spectroscopy of Fluorescein (FITC) Dyed Colloidal Silica Spheres. Journal of Physical Chemistry B, 1999, 103, 1408-1415.	1.2	232
8	Strong effects of photonic band structures on the diffraction of colloidal crystals. Physical Review B, 1996, 53, 16231-16235.	1.1	191
9	Fabrication and Characterization of Large Macroporous Photonic Crystals in Titania. Chemistry of Materials, 2001, 13, 4486-4499.	3.2	179
10	Structure and formation of a gel of colloidal disks. Physical Review E, 1998, 57, 1962-1970.	0.8	178
11	Frequency-Dependent Spontaneous Emission Rate from CdSe and CdTe Nanocrystals: Influence of Dark States. Physical Review Letters, 2005, 95, 236804.	2.9	174
12	Focusing light through random photonic media by binary amplitude modulation. Optics Express, 2011, 19, 4017.	1.7	173
13	Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models. Physical Review B, 2007, 75, .	1.1	170
14	Fluorescence lifetimes and linewidths of dye in photonic crystals. Physical Review A, 1999, 59, 4727-4731.	1.0	155
15	Directional Fluorescence Spectra of Laser Dye in Opal and Inverse Opal Photonic Crystals. Journal of Physical Chemistry B, 2005, 109, 9980-9988.	1.2	155
16	Large Dispersive Effects near the Band Edges of Photonic Crystals. Physical Review Letters, 1999, 83, 2942-2945.	2.9	150
17	Electrochemical Assembly of Ordered Macropores in Gold. Advanced Materials, 2000, 12, 888-890.	11.1	149
18	Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency. Physical Review Letters, 2012, 109, 203601.	2.9	141

#	Article	IF	CITATIONS
19	Multiple Bragg wave coupling in photonic band-gap crystals. Physical Review B, 2000, 62, 9872-9875.	1.1	136
20	Optical extinction due to intrinsic structural variations of photonic crystals. Physical Review B, 2005, 72, .	1.1	135
21	Inhibited Light Propagation and Broadband Reflection in Photonic Air-Sphere Crystals. Physical Review Letters, 1999, 83, 2730-2733.	2.9	133
22	Inhibited Spontaneous Emission of Quantum Dots Observed in a 3D Photonic Band Gap. Physical Review Letters, 2011, 107, 193903.	2.9	122
23	A high-pressure van der Waals compound in solid nitrogen-helium mixtures. Nature, 1992, 358, 46-48.	13.7	121
24	Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements. Physical Review B, 2008, 77, .	1.1	119
25	X-ray Diffraction of Photonic Colloidal Single Crystals. Langmuir, 1997, 13, 6004-6008.	1.6	118
26	Broadband Fivefold Reduction of Vacuum Fluctuations Probed by Dyes in Photonic Crystals. Physical Review Letters, 2002, 88, 143903.	2.9	112
27	Speckle correlation resolution enhancement of wide-field fluorescence imaging. Optica, 2015, 2, 424.	4.8	106
28	Light sources inside photonic crystals. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 1403.	0.9	101
29	Ultrafast switching of photonic density of states in photonic crystals. Physical Review B, 2002, 66, .	1.1	99
30	Light Exiting from Real Photonic Band Gap Crystals is Diffuse and Strongly Directional. Physical Review Letters, 2003, 91, 213902.	2.9	94
31	Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states. Physical Review B, 2009, 79, .	1.1	89
32	Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals. Physical Review B, 2007, 75, .	1.1	86
33	Structure of crystalline methanol at high pressure. Physical Review B, 1998, 58, R11809-R11812.	1.1	85
34	Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals. Physical Review A, 2000, 63, .	1.0	84
35	On the temperature correction to the ruby pressure scale. Journal of Applied Physics, 1991, 69, 6744-6746.	1.1	79
36	Enhanced backscattering from photonic crystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 268, 104-111.	0.9	74

#	Article	lF	CITATIONS
37	Effective Screening of Hydrodynamic Interactions in Charged Colloidal Suspensions. Physical Review Letters, 2000, 85, 5460-5463.	2.9	74
38	Observation of Spatial Fluctuations of the Local Density of States in Random Photonic Media. Physical Review Letters, 2010, 105, 013904.	2.9	72
39	Sound Velocities in Dense Hydrogen and the Interior of Jupiter. Science, 1994, 263, 1590-1593.	6.0	69
40	Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography. Nanotechnology, 2008, 19, 145304.	1.3	66
41	Pressure dependence of hydrogen bonding in a novel H2Oî—,H2 clathrate. Chemical Physics Letters, 1996, 257, 524-530.	1.2	63
42	In SituCharacterization of Colloidal Spheres by Synchrotron Small-Angle X-ray Scattering. Langmuir, 1997, 13, 6120-6129.	1.6	61
43	The melting curve of neon at high pressure. Journal of Chemical Physics, 1991, 94, 3835-3838.	1.2	59
44	Fluorescence Lifetime of Emitters with Broad Homogeneous Linewidths Modified in Opal Photonic Crystals. Journal of Physical Chemistry C, 2008, 112, 7250-7254.	1.5	59
45	Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 272, 101-106.	0.9	57
46	Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder. Physical Review E, 2002, 66, 036616.	0.8	54
47	Förster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion. New Journal of Physics, 2016, 18, 053037.	1.2	54
48	Optimal control of light propagation through multiple-scattering media in the presence of noise. Biomedical Optics Express, 2013, 4, 1759.	1.5	53
49	Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport. Physical Review B, 2014, 89, .	1.1	53
50	Programmable two-photon quantum interference in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mn>10</mml:mn><mml:mn>3<td>:m¤x/mn</td><td>nl:n53up></td></mml:mn></mml:msup></mml:math>	:m¤x/mn	nl:n 53 up>
51	Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors. Journal of Applied Physics, 2005, 97, 043102.	1.1	52
52	Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment. Physical Review A, 2009, 80, .	1.0	51
53	Optical properties of real photonic crystals: anomalous diffuse transmission. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1075.	0.9	50
54	Color Control of Natural Fluorescent Proteins by Photonic Crystals. Small, 2008, 4, 492-496.	5.2	49

#	Article	IF	CITATIONS
55	Freezing of simple systems using density functional theory. Journal of Chemical Physics, 1990, 93, 5187-5193.	1.2	48
56	Dynamical ultrafast all-optical switching of planar GaAsâ^•AlAs photonic microcavities. Applied Physics Letters, 2007, 91, .	1.5	48
57	Ultimate fast optical switching of a planar microcavity in the telecom wavelength range. Applied Physics Letters, 2011, 98, 161114.	1.5	48
58	Classical antennas, quantum emitters, and densities of optical states. Journal of Optics (United) Tj ETQq0 0 0 rgB	BT /Overlo 1.0	ck 10 Tf 50 6
59	Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals. Physical Review A, 2005, 71, .	1.0	43
60	Comment on "Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal― Physical Review Letters, 1999, 83, 5401-5401.	2.9	42
61	Improved phase diagram of nitrogen up to 85 kbar. Journal of Chemical Physics, 1989, 91, 6302-6305.	1.2	41
62	Transmission and diffraction by photonic colloidal crystals. Journal of Physics Condensed Matter, 1996, 8, 9503-9507.	0.7	40
63	High-pressure triple point in helium: The melting line of helium up to 240 kbar. Physical Review B, 1990, 42, 6106-6109.	1.1	39
64	Dynamics of dense, charge-stabilized suspensions of colloidal silica studied by correlation spectroscopy with coherent X-rays. Journal of Applied Crystallography, 2000, 33, 424-427.	1.9	39
65	Emission Spectra and Lifetimes of R6G Dye on Silica-Coated Titania Powder. Langmuir, 2002, 18, 2444-2447.	1.6	39
66	Accurate calculation of the local density of optical states in inverse-opal photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 987.	0.9	39
67	Photon correlation spectroscopy: X rays versus visible light. Physical Review E, 2000, 61, 1676-1680.	0.8	38
68	Signature of a three-dimensional photonic band gap observed on silicon inverse woodpile photonic crystals. Physical Review B, 2011, 83, .	1.1	38
69	Competition between vitrification and crystallization of methanol at high pressure. Journal of Chemical Physics, 1995, 103, 2661-2669.	1.2	36
70	Structural Properties of Opals Grown with Vertical Controlled Drying. Langmuir, 2008, 24, 4670-4675.	1.6	35
71	Inverseâ€Woodpile Photonic Band Gap Crystals with a Cubic Diamondâ€like Structure Made from Singleâ€Crystalline Silicon. Advanced Functional Materials, 2012, 22, 25-31.	7.8	35
72	Synchrotron Small-Angle X-ray Scattering of Colloids and Photonic Colloidal Crystals. Journal of Applied Crystallography, 1997, 30, 637-641.	1.9	34

#	Article	IF	CITATIONS
73	Macroporous germanium by electrochemical deposition. Chemical Communications, 2002, , 2054-2055.	2.2	33
74	Broadband mean free path of diffuse light in polydisperse ensembles of scatterers for white light-emitting diode lighting. Applied Optics, 2013, 52, 2602.	0.9	33
75	All-optical switching of a microcavity repeated at terahertz rates. Optics Letters, 2013, 38, 374.	1.7	33
76	Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode. Optics Express, 2014, 22, 8190.	1.7	33
77	Local density of optical states in the band gap of a finite one-dimensional photonic crystal. Physical Review B, 2014, 89, .	1.1	32
78	An experimental study of strongly modified emission in inverse opal photonic crystals. Physica Status Solidi A, 2003, 197, 648-661.	1.7	29
79	Design of a three-dimensional photonic band gap cavity in a diamondlike inverse woodpile photonic crystal. Physical Review B, 2014, 90, .	1.1	29
80	Three-dimensional photonic band gap cavity with finite support: Enhanced energy density and optical absorption. Physical Review B, $2019, 99, .$	1.1	29
81	Long-wavelength fast semiconductor saturable absorber mirrors using metamorphic growth on GaAs substrates. Applied Physics Letters, 2005, 87, 121106.	1.5	28
82	Measurement of a band-edge tail in the density of states of a photonic-crystal waveguide. Physical Review B, $2012, 86, .$	1.1	28
83	Finite-size Scaling of the Density of States in Photonic Band Gap Crystals. Physical Review Letters, 2018, 120, 237402.	2.9	28
84	All-optical octave-broad ultrafast switching of Si woodpile photonic band gap crystals. Physical Review B, 2008, 77, .	1.1	27
85	The influence of fabrication deviations on the photonic band gap of three-dimensional inverse woodpile nanostructures. Journal of Applied Physics, 2009, 105, 093108.	1.1	27
86	Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium. New Journal of Physics, 2016, 18, 043032.	1.2	27
87	Solubility of fluid helium in solid nitrogen at high pressure. Physical Review Letters, 1990, 64, 898-901.	2.9	24
88	Near-field optical investigation of three-dimensional photonic crystals. Physical Review E, 2003, 68, 015601.	0.8	24
89	Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates. Physical Chemistry Chemical Physics, 2009, 11, 2525.	1.3	24
90	Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping. Optica, 2018, 5, 844.	4.8	24

#	Article	IF	Citations
91	Stability of van der Waals compounds and investigation of the intermolecular potential in helium–xenon mixtures. Journal of Chemical Physics, 1992, 97, 5707-5712.	1.2	23
92	Liquid crystal infiltration of complex dielectrics. Physica B: Condensed Matter, 2003, 338, 143-148.	1.3	23
93	Particle Excursions in Colloidal Crystals. Physical Review Letters, 2001, 86, 4855-4858.	2.9	21
94	Focused ion beam milling of nanocavities in single colloidal particles and self-assembled opals. Nanotechnology, 2006, 17, 5717-5721.	1.3	21
95	Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam. Physical Review B, 2010, 82, .	1.1	21
96	Method for making a single-step etch mask for 3D monolithic nanostructures. Nanotechnology, 2015, 26, 505302.	1.3	20
97	Analytical modeling of light transport in scattering materials with strong absorption. Optics Express, 2017, 25, A906.	1.7	20
98	Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals. Journal of Applied Physics, 2007, 102, 053111.	1.1	18
99	Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity. Optics Express, 2013, 21, 23130.	1.7	18
100	Reflectivity calculated for a three-dimensional silicon photonic band gap crystal with finite support. Physical Review B, 2017, 95, .	1.1	18
101	Three-dimensional photonic crystals as a cage for light. Comptes Rendus Physique, 2002, 3, 67-77.	0.3	17
102	Fabrication of three-dimensional nanostructures by focused ion beam milling. Journal of Vacuum Science & Technology B, 2008, 26, 973.	1.3	17
103	Coherent Cherenkov radiation and laser oscillation in a photonic crystal. Physical Review A, 2016, 94, .	1.0	17
104	Optical Probes inside Photonic Crystals. MRS Bulletin, 2001, 26, 642-646.	1.7	16
105	Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs. Journal of Applied Physics, 2008, 104, .	1.1	16
106	Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 610.	0.9	16
107	Differential ultrafast all-optical switching of the resonances of a micropillar cavity. Applied Physics Letters, 2014, 105, .	1.5	16
108	Optical transmission matrix as a probe of the photonic strength. Physical Review A, 2016, 94, .	1.0	16

#	Article	IF	Citations
109	Structure and Formation of a Gel of Colloidal Disks. International Journal of Thermophysics, 1998, 19, 887-894.	1.0	15
110	Observation of Sub-Bragg Diffraction of Waves in Crystals. Physical Review Letters, 2012, 108, 083901.	2.9	14
111	X-ray Imaging of Functional Three-Dimensional Nanostructures on Massive Substrates. ACS Nano, 2019, 13, 13932-13939.	7.3	14
112	Quantitative Determination of Dark Chromophore Population Explains the Apparent Low Quantum Yield of Red Fluorescent Proteins. Journal of Physical Chemistry B, 2020, 124, 1383-1391.	1.2	14
113	Spatially Shaping Waves to Penetrate Deep inside a Forbidden Gap. Physical Review Letters, 2021, 126, 177402.	2.9	14
114	Controlling the intensity of light in large areas at the interfaces of a scattering medium. Physical Review A, 2016, 94, .	1.0	13
115	Local density of optical states in the three-dimensional band gap of a finite photonic crystal. Physical Review B, 2020, 101, .	1.1	13
116	Competition between electronic Kerr and free-carrier effects in an ultimate-fast optically switched semiconductor microcavity. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2630.	0.9	12
117	Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs-AlAs microcavity. Journal of the Optical Society of America B: Optical Physics, 2012, 29, A1.	0.9	12
118	Controlled subâ€10â€nanometer poly(<i>N</i> à€isopropylâ€acrylamide) layers grafted from silicon by atom transfer radical polymerization. Polymers for Advanced Technologies, 2018, 29, 806-813.	1.6	12
119	The phase diagram of the binary mixture nitrogen-helium at high pressure. Physica A: Statistical Mechanics and Its Applications, 1992, 182, 365-387.	1.2	11
120	Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors. Review of Scientific Instruments, 2009, 80, 073104.	0.6	11
121	Systematic Design of the Color Point of a White LED. ACS Photonics, 2019, 6, 3070-3075.	3.2	11
122	Cartesian light: Unconventional propagation of light in a three-dimensional superlattice of coupled cavities within a three-dimensional photonic band gap. Physical Review B, 2019, 99, .	1.1	11
123	Reflectivity of metallodielectric photonic glasses. Physical Review B, 2004, 69, .	1.1	10
124	Controlling the quality factor of a tuning-fork resonance between 9 and 300 K for scanning-probe microscopy. Journal Physics D: Applied Physics, 2011, 44, 375502.	1.3	10
125	Reflectivity of three-dimensional GaAs photonic band-gap crystals of finite thickness. Physical Review B, 2020, 101, .	1.1	10
126	Mutual extinction and transparency of multiple incident light waves. Europhysics Letters, 2020, 130, 34002.	0.7	10

#	Article	IF	CITATIONS
127	Angular Redistribution of Near-Infrared Emission from Quantum Dots in Three-Dimensional Photonic Crystals. Journal of Physical Chemistry C, 2013, 117, 3431-3439.	1.5	9
128	Experimental probe of a complete 3D photonic band gap. Optics Express, 2020, 28, 2683.	1.7	9
129	Homogeneity of Oxide Air-Sphere Crystals from Millimeter to 100-nm Length Scales:  A Probe for Macroporous Photonic Crystal Formation. Chemistry of Materials, 2004, 16, 2425-2432.	3.2	8
130	Broadband coherent backscattering spectroscopy of the interplay between order and disorder in three-dimensional opal photonic crystals. Physical Review B, 2011, 83, .	1.1	8
131	Method to pattern etch masks in two inclined planes for three-dimensional nano- and microfabrication. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 061604.	0.6	8
132	Phase behavior of the system He-N2 at high pressures. International Journal of Thermophysics, 1989, 10, 15-25.	1.0	7
133	Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect. Optics Express, 2016, 24, 239.	1.7	7
134	Observation of mutual extinction and transparency in light scattering. Physical Review A, 2021, 104, .	1.0	7
135	Targeted Positioning of Quantum Dots Inside 3D Silicon Photonic Crystals Revealed by Synchrotron X-ray Fluorescence Tomography. ACS Nano, 2022, 16, 3674-3683.	7.3	7
136	Observation of intensity statistics of light transmitted through 3D random media. Optics Letters, 2014, 39, 6347.	1.7	6
137	Non-invasive imaging through opaque scattering layers. Proceedings of SPIE, 2015, , .	0.8	6
138	How to distinguish elastically scattered light from Stokes shifted light for solid-state lighting?. Journal of Applied Physics, 2016, 119, 093102.	1.1	6
139	Mapping the energy density of shaped waves in scattering media onto a complete set of diffusion modes. Optics Express, 2016, 24, 18525.	1.7	6
140	Experimental Probes of the Optical Properties of Photonic Crystals., 2001,, 191-218.		5
141	Deterministic and Controllable Photonic Scattering Media via Direct Laser Writing. Advanced Optical Materials, 2020, 8, 2001438.	3.6	5
142	Electrochemical Assembly of Ordered Macropores in Gold. , 2000, 12, 888.		5
143	Breakdown of light transport models in photonic scattering slabs with strong absorption and anisotropy. Physical Review A, 2022, 105, .	1.0	5
144	Near-field probing of photonic crystals. Photonics and Nanostructures - Fundamentals and Applications, 2004, 2, 127-135.	1.0	4

#	Article	IF	CITATIONS
145	Ultrafast all-optical switching of 3D photonic band gap crystals. , 2007, , .		4
146	Spectral emission imaging to map photonic properties below the crystal surface of 3D photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2101.	0.9	3
147	Extraction of optical Bloch modes in a photonic-crystal waveguide. Journal of Applied Physics, 2012, 111, 033108.	1.1	3
148	Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures. Physical Review B, 2015, 91, .	1,1	3
149	Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers. Light: Science and Applications, 2021, 10, 215.	7.7	3
150	Imaging Through Scattering Media. , 2013, , .		3
151	A diamond anvil cell for the study of fluid mixtures at high temperatures. High Pressure Research, 1990, 4, 613-615.	0.4	2
152	A diamondâ€anvil cell for the study of fluid binary mixtures at high temperatures. Review of Scientific Instruments, 1991, 62, 1844-1848.	0.6	2
153	Method to map individual electromagnetic field components inside a photonic crystal. Optics Express, 2012, 20, 22902.	1.7	2
154	Cavity quantum electrodynamics with three-dimensional photonic band gap crystals., 0,, 180-214.		2
155	Scattering media characterization with phase-only wavefront modulation. Optics Express, 2018, 26, 2369.	1.7	2
156	Absorption Enhancement of a Thin Silicon Film with a 3D Photonic Band Gap Crystal Back Reflector. , 2019, , .		2
157	Influence of Optical Band Structures on the Diffraction of Photonic Colloidal Crystals. , 1996, , 107-118.		2
158	Melting of helium: A comparison with He - N2. High Pressure Research, 1990, 4, 592-594.	0.4	1
159	High pressure phase diagram of helium-hydrogen calculated through fluid integral equations and density functional theory of freezing. Journal of Physics Condensed Matter, 1991, 3, 1613-1625.	0.7	1
160	Ultrafast optical switching of photonic crystals. , 2006, , .		1
161	Method to deterministically study photonic nanostructures in different experimental instruments. Journal of Microscopy, 2009, 233, 18-23.	0.8	1
162	Scattering optics resolve nanostructure. , 2011, , .		1

#	Article	IF	CITATIONS
163	High-resolution phase and amplitude modulation using a digital micromirror device. , 2013, , .		1
164	Measurements on the optical transmission matrices of strongly scattering nanowire layers. , 2013, , .		1
165	Broadband multiple light scattering in white LED diffusers. , 2013, , .		1
166	Mapping the absolute electromagnetic field strength of individual field components inside a photonic crystal. , 2013, , .		1
167	Light propagation and emission in complex photonic media. , 0, , 1-12.		1
168	Cavity switching: A novel resource for solid-state quantum optics., 2017,,.		1
169	An Optical Probe of a 3D Photonic Band Gap. , 2019, , .		1
170	Enhanced absorption in thin and ultrathin silicon films by 3D photonic band gap back reflectors. Optics Express, 2021, 29, 41023.	1.7	1
171	High-Pressure Physics. Science, 1992, 258, 1014-1014.	6.0	0
172	Isotope effects on fluid-fluid separation of H2-He mixtures at high pressures. Journal of Low Temperature Physics, 1992, 89, 711-714.	0.6	0
173	Dense hydrogen in the outer solar system: Implications from recent high-pressure experiments. AIP Conference Proceedings, 1995, , .	0.3	0
174	Light Transport in Complex Photonic Systems. , 2003, , 2-20.		0
175	Purcell enhanced and inhibited spontaneous emission in 3D photonic crystals., 0,,.		0
176	Dynamics of spontaneous emission controlled by local density of states in photonic crystals., 2006,,.		0
177	Octave-broad ultrafast all-optical switching of silicon woodpile photonic band gap crystals. , 2007, , .		0
178	Ultrafast switching of Si inverse opal photonic band gap crystals. , 2007, , .		0
179	Quantum efficiency of self-assembled quantum dots determined by a modified optical local density of states., 2007,,.		0
180	Accurate Measurement of the Transition Dipole Moment of Self-Assembled Quantum Dots., 2007,,.		0

#	Article	IF	CITATIONS
181	Femtosecond versus Picosecond All-Optical Switching of 3D Silicon Photonic Crystals near Telecom Wavelengths. , 2007, , .		O
182	Spontaneous emission lifetimes of infrared quantum dots controlled with photonic crystals. , 2009, , .		0
183	Photonic interactions of resonant cesium atoms and opal photonic crystals. , 2009, , .		0
184	\$#x201C; On Donuts and Peanuts $$#x201D;$: Strongly orientation-dependent spontaneous emission rates in any nanophotonic environment. , 2009, , .		0
185	Nonsingle exponential switching dynamics of a GaAs/AlAs microcavity. , 2009, , .		0
186	Observation of fluctuations of the local density of states in disordered photonic media., 2009,,.		0
187	Size dependent oscillator strength of CdSe quantum dots determined by nanophotonic control., 2009,,.		0
188	What is the real quality factor of an ultrafast planar photonic microcavity?., 2009,,.		0
189	Competing ultrafast switching mechanisms in silicon woodpile photonic crystals near telecom wavelengths. , 2009, , .		0
190	Strong angular intensity redistribution of near-infrared light emitted by sources inside photonic crystals. , 2009, , .		0
191	Spatially resolved modes in GaAs/AlAs micropillar resonators. , 2009, , .		0
192	Instantaneous switching of photonic cavity structure by electronic Kerr nonlinearity., 2009,,.		0
193	Controlling fluorescent proteins by manipulating the local density of photonic states. Proceedings of SPIE, 2009, , .	0.8	0
194	Q-factor dependent Kerr switching of semiconductor microcavities. , 2011, , .		0
195	Ultimate fast optical switching of a semiconductor photonic microcavity. , 2011, , .		0
196	Competition between electronic Kerr and free carrier effects in an ultimate fast switched semiconductor microcavity. , 2011, , .		0
197	Nanobiophotonics: Using the nanophotonics toolbox to manipulate biological fluorophores. , 2011, , .		0
198	Experimental observation of sub-Bragg frequency gaps in photonic crystals., 2011,,.		0

#	Article	Citations
199	Experimental signature of a broad 3D photonic band gap in silicon nanostructures., 2011,,.	O
200	A nanophotonic probe for quantum electrodynamics in random cavities. , 2011, , .	0
201	Focusing light through turbid media by binary amplitude modulation. , 2011, , .	0
202	Photonic-crystal waveguides with disorder: Measurement of a band-edge tail in the density of states. , 2012, , .	0
203	Frequency dependent dynamics of semiconductor microcavities under ultrafast carrier switching. , 2013, , .	0
204	Can nanophotonics control the F& #x00F6; rster resonance energy transfer efficiency?., 2013, , .	0
205	All-optical switching of a microcavity repeated at terahertz clock rates. , 2013, , .	0
206	Switching spontaneous emission in microcavities in the time domain. , 2013, , .	0
207	Tunnelling of vacuum fluctuations in a 3D photonic band gap; strongly inhibited spontaneous emission. , 2013, , .	0
208	Maximum control of light propagation through turbid media in the presence of noise. , 2013, , .	0
209	Noninvasive fluorescence imaging through strongly scattering layers. , 2013, , .	0
210	Programmable quantum interference in complex optical networks realized in opaque scattering media., 2016,,.	0
211	Coupling of light into the fundamental diffusion mode of a scattering medium (Conference) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10 Tf
212	Transport of Light Through White-LED Phosphor Plates. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 467-468.	0
213	Intercavity coupling rate control using ancillary nanocavities. , 2017, , .	0
214	Finite size scaling of the density of states in photonic band gap crystals. , 2017, , .	0
215	Three-dimensional crystal of cavities in a 3D photonic band gap crystal., 2017,,.	0
216	Looking inside a 3D scattering medium to observe the 3D spatially-resolved optical energy density that is enhanced by wavefront shaping. , 2017 , , .	0

#	Article	IF	CITATIONS
217	Interplay of bloch waves and scattered waves in real photonic crystals., 2017,,.		O
218	The inside view of 3D photonic nanostructures. , 2017, , .		0
219	Reproducibility of artificial multiple scattering media. , 2017, , .		0
220	Controlling quantum correlations in massively multichannel optical networks., 2017,,.		0
221	Accurate determination of the transport parameters of light in white light emitting diodes. , 2017, , .		0
222	Placing Quantum Dots in 3D Photonic Crystals and Finding Them Back., 2019,,.		0
223	Enhanced Energy Density and Optical Absorption in a 3D Photonic Band Gap Cavity with Finite Support. , 2019, , .		0
224	X-Ray Imaging of Functional Three-Dimensional Photonic Nanostructures with 20-nm Resolution. , 2019, , .		0
225	X-Ray Microscopy of Polymer Photonic Structures. , 2019, , .		0
226	Enhanced transparency in strongly scattering media. , 2021, , .		0
227	Simulating physics of tomographically reconstructed photonic crystals. , 2021, , .		O
228	3 Ways to View the Local Density of Optical States. , 2021, , .		0
229	Light transport by a 3D cavity superlattice in a photonic band gap. , 2021, , .		0
230	Position dependence of local density of states in 3D band gap of a finite photonic crystal., 2021,,.		0
231	Emission and propagation of light controlled by 3D photonic crystals. , 2003, , .		0
232	Controlling Fluorescent Proteins by Manipulating the Local Density of Photonic States., 2009,,.		0
233	Photonic Interactions of Resonant Cesium Atoms and Opal Photonic Crystals. , 2009, , .		0
234	Controlling fluorescent proteins by manipulating the local density of photonic states. , 2009, , .		0

#	Article	IF	CITATIONS
235	Focusing Light through Turbid Media by Binary Amplitude Shaping. , 2010, , .		0
236	Transmission channels for light in absorbing random media. , 2014, , .		0
237	2-D small-angle X-ray scattering patterns of colloids and photonic colloidal crystals. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C490-C490.	0.3	0
238	X-ray diffraction of liquids and glasses at high pressure. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C545-C545.	0.3	0