
André Zelanis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8649003/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Proteolytic signaling: An introduction. , 2022, , 1-9.		Ο
2	Bioinformatic reanalysis of public proteomics data reveals that nuclear proteins are recurrent in cancer secretomes. Traffic, 2022, 23, 98-108.	2.7	3
3	Assessing proteolytic events in bioinformatic reanalysis of public secretome data from melanoma cell lines. Biochemistry and Biophysics Reports, 2022, 30, 101259.	1.3	1
4	Community-based network analyses reveal emerging connectivity patterns of protein-protein interactions in murine melanoma secretome. Journal of Proteomics, 2021, 232, 104063.	2.4	5
5	Venom Profiling of the Insular Species <i>Bothrops alcatraz</i> : Characterization of Proteome, Glycoproteome, and N-Terminome Using Terminal Amine Isotopic Labeling of Substrates. Journal of Proteome Research, 2021, 20, 1341-1358.	3.7	5
6	The distinct N-terminomes of Bothrops jararaca newborn and adult venoms. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140643.	2.3	2
7	Systemic Effects of Hemorrhagic Snake Venom Metalloproteinases: Untargeted Peptidomics to Explore the Pathodegradome of Plasma Proteins. Toxins, 2021, 13, 764.	3.4	3
8	Cleavage of proteoglycans, plasma proteins and the platelet-derived growth factor receptor in the hemorrhagic process induced by snake venom metalloproteinases. Scientific Reports, 2020, 10, 12912.	3.3	13
9	Heterotypic signaling between dermal fibroblasts and melanoma cells induces phenotypic plasticity and proteome rearrangement in malignant cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140525.	2.3	6
10	Deep Profiling of the Cleavage Specificity and Human Substrates of Snake Venom Metalloprotease HF3 by Proteomic Identification of Cleavage Site Specificity (PICS) Using Proteome Derived Peptide Libraries and Terminal Amine Isotopic Labeling of Substrates (TAILS) N-Terminomics. Journal of Proteome Research, 2019, 18, 3419-3428.	3.7	15
11	A first step towards building spectral libraries as complementary tools for snake venom proteome/peptidome studies. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 31, 100599.	1.0	1
12	Early response of C2C12 myotubes to a sub-cytotoxic dose of hemorrhagic metalloproteinase HF3 from Bothrops jararaca venom. Journal of Proteomics, 2019, 198, 163-176.	2.4	11
13	Proteomic profiling of the proteolytic events in the secretome of the transformed phenotype of melanocyte-derived cells using Terminal Amine Isotopic Labeling of Substrates. Journal of Proteomics, 2019, 192, 291-298.	2.4	4
14	Analysis of the Snake Venom Peptidome. Methods in Molecular Biology, 2018, 1719, 349-358.	0.9	5
15	Signatures of protein expression revealed by secretome analyses of cancer associated fibroblasts and melanoma cell lines. Journal of Proteomics, 2018, 174, 1-8.	2.4	20
16	Structures of N-Glycans of Bothrops Venoms Revealed as Molecular Signatures that Contribute to Venom Phenotype in Viperid Snakes. Molecular and Cellular Proteomics, 2018, 17, 1261-1284.	3.8	17
17	Peptidomics of Acanthoscurria gomesiana spider venom reveals new toxins with potential antimicrobial activity. Journal of Proteomics, 2017, 151, 232-242.	2.4	36
18	Structural basis for dimer formation of the <scp>CRISPR</scp> â€associated protein Csm2 of <i>Thermotoga maritima</i> . FEBS Journal, 2016, 283, 694-703.	4.7	6

André Zelanis

#	Article	IF	CITATIONS
19	Proteome-derived peptide library for the elucidation of the cleavage specificity of HF3, a snake venom metalloproteinase. Amino Acids, 2016, 48, 1331-1335.	2.7	9
20	Dynamic Rearrangement in Snake Venom Gland Proteome: Insights into <i>Bothrops jararaca</i> Intraspecific Venom Variation. Journal of Proteome Research, 2016, 15, 3752-3762.	3.7	30
21	Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid <i>Phalotris mertensi</i> . Genome Biology and Evolution, 2016, 8, 2266-2287.	2.5	29
22	Proteomic and Glycoproteomic Profilings Reveal That Post-translational Modifications of Toxins Contribute to Venom Phenotype in Snakes. Journal of Proteome Research, 2016, 15, 2658-2675.	3.7	29
23	High-resolution proteomic profiling of spider venom: expanding the toxin diversity of Phoneutria nigriventer venom. Amino Acids, 2016, 48, 901-906.	2.7	11
24	Snake Venom Peptidomics. , 2016, , 317-331.		2
25	Proteomic identification of gender molecular markers in Bothrops jararaca venom. Journal of Proteomics, 2016, 139, 26-37.	2.4	47
26	Proteomics and drug discovery in cancer. Drug Discovery Today, 2016, 21, 264-277.	6.4	25
27	AHNAK enables mammary carcinoma cells to produce extracellular vesicles that increase neighboring fibroblast cell motility. Oncotarget, 2016, 7, 49998-50016.	1.8	50
28	Evaluation of a Vaccine Formulation against Streptococcus pneumoniae Based on Choline-Binding Proteins. Vaccine Journal, 2015, 22, 213-220.	3.1	12
29	Purification, crystallization, crystallographic analysis and phasing of the CRISPR-associated protein Csm2 from <i>Thermotoga maritima</i> . Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1223-1227.	0.8	1
30	Data in support of quantitative proteomics to identify potential virulence regulators in Paracoccidioides brasiliensis isolates. Data in Brief, 2015, 5, 155-160.	1.0	2
31	Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites. Journal of Proteomics, 2015, 113, 260-267.	2.4	23
32	Ontogenetic Variation in Biological Activities of Venoms from Hybrids between Bothrops erythromelas and Bothrops neuwiedi Snakes. PLoS ONE, 2015, 10, e0145516.	2.5	20
33	The proteinase-rich proteome ofBothrops jararacavenom. Toxin Reviews, 2014, 33, 169-184.	3.4	14
34	Exploring Potential Virulence Regulators inParacoccidioides brasiliensisIsolates of Varying Virulence through Quantitative Proteomics. Journal of Proteome Research, 2014, 13, 4259-4271.	3.7	24
35	Unraveling snake venom complexity with â€~omics' approaches: Challenges and perspectives. Toxicon, 2014, 87, 131-134.	1.6	37
36	Proteins differentially expressed in human beta-cells-enriched pancreatic islet cultures and human insulinomas. Molecular and Cellular Endocrinology, 2013, 381, 16-25.	3.2	3

André Zelanis

#	Article	IF	CITATIONS
37	Individual Variability in the Venom Proteome of Juvenile <i>Bothrops jararaca</i> Specimens. Journal of Proteome Research, 2013, 12, 4585-4598.	3.7	49
38	Rapid purification of serine proteinases from Bothrops alternatus and Bothrops moojeni venoms. Toxicon, 2013, 76, 282-290.	1.6	17
39	Cotiarinase is a novel prothrombin activator from the venom ofÂBothrops cotiara. Biochimie, 2013, 95, 1655-1659.	2.6	10
40	Peptidomics of Three Bothrops Snake Venoms: Insights Into the Molecular Diversification of Proteomes and Peptidomes. Molecular and Cellular Proteomics, 2012, 11, 1245-1262.	3.8	74
41	N-glycome profiling of Bothrops jararaca newborn and adult venoms. Journal of Proteomics, 2012, 75, 774-782.	2.4	31
42	A Transcriptomic View of the Proteome Variability of Newborn and Adult Bothrops jararaca Snake Venoms. PLoS Neglected Tropical Diseases, 2012, 6, e1554.	3.0	61
43	BJ-PI2, A non-hemorrhagic metalloproteinase from Bothrops jararaca snake venom. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1809-1821.	2.4	28
44	Venomics Profiling of <i>Thamnodynastes strigatus</i> Unveils Matrix Metalloproteinases and Other Novel Proteins Recruited to the Toxin Arsenal of Rear-Fanged Snakes. Journal of Proteome Research, 2012, 11, 1152-1162.	3.7	61
45	<i>Bothrops jararaca</i> venom proteome rearrangement upon neonate to adult transition. Proteomics, 2011, 11, 4218-4228.	2.2	70
46	Preliminary biochemical characterization of the venoms of five Colubridae species from Brazil. Toxicon, 2010, 55, 666-669.	1.6	20
47	Analysis of the Ontogenetic Variation in the Venom Proteome/Peptidome of <i>Bothrops jararaca</i> Reveals Different Strategies to Deal with Prey. Journal of Proteome Research, 2010, 9, 2278-2291.	3.7	117
48	Simplified procedures for the isolation of HF3, bothropasin, disintegrin-like/cysteine-rich protein and a novel P-I metalloproteinase from Bothrops jararaca venom. Toxicon, 2009, 53, 797-801.	1.6	34
49	Ontogenetic changes in the venom of Bothrops insularis (Serpentes: Viperidae)and its biological implication. South American Journal of Herpetology, 2008, 3, 43-50.	0.5	20
50	Variability in expression of Bothrops insularis snake venom proteases: An ontogenetic approach. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 145, 601-609.	2.6	15