K M Bedka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8648694/publications.pdf Version: 2024-02-01

K M REDKA

#	Article	IF	CITATIONS
1	Satellite-Based Characterization of Convection and Impacts from the Catastrophic 10 August 2020 Midwest U.S. Derecho. Bulletin of the American Meteorological Society, 2022, 103, E1172-E1196.	1.7	2
2	Identifying Outflow Regions of North American Monsoon Anticycloneâ€Mediated Meridional Transport of Convectively Influenced Air Masses in the Lower Stratosphere. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034644.	1.2	5
3	Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign. Atmospheric Measurement Techniques, 2021, 14, 4305-4334.	1.2	15
4	Recent Advances in Detection of Overshooting Cloud Tops From Longwave Infrared Satellite Imagery. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034359.	1.2	11
5	Comparing Tropopauseâ€Penetrating Convection Identifications Derived From NEXRAD and GOES Over the Contiguous United States. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034319.	1.2	4
6	A kernel-driven BRDF model to inform satellite-derived visible anvil cloud detection. Atmospheric Measurement Techniques, 2020, 13, 5491-5511.	1.2	6
7	Global Cloud Detection for CERES Edition 4 Using Terra and Aqua MODIS Data. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 9410-9449.	2.7	49
8	Evaluating the Ability of Remote Sensing Observations to Identify Significantly Severe and Potentially Tornadic Storms. Journal of Applied Meteorology and Climatology, 2019, 58, 2569-2590.	0.6	20
9	Identifying Source Regions and the Distribution of Crossâ€Tropopause Convective Outflow Over North America During the Warm Season. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13750-13762.	1.2	12
10	BATAL: The Balloon Measurement Campaigns of the Asian Tropopause Aerosol Layer. Bulletin of the American Meteorological Society, 2018, 99, 955-973.	1.7	74
11	The Above-Anvil Cirrus Plume: An Important Severe Weather Indicator in Visible and Infrared Satellite Imagery. Weather and Forecasting, 2018, 33, 1159-1181.	0.5	40
12	Relationships between Deep Convection Updraft Characteristics and Satellite-Based Super Rapid Scan Mesoscale Atmospheric Motion Vector–Derived Flow. Monthly Weather Review, 2018, 146, 3461-3480.	0.5	21
13	A prototype method for diagnosing high ice water content probability using satellite imager data. Atmospheric Measurement Techniques, 2018, 11, 1615-1637.	1.2	24
14	Terrestrial gamma ray flashes due to particle acceleration in tropical storm systems. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3374-3395.	1.2	15
15	On the Development of Above-Anvil Cirrus Plumes in Extratropical Convection. Journals of the Atmospheric Sciences, 2017, 74, 1617-1633.	0.6	56
16	A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9529-9554.	1.2	57
17	Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection. Atmospheric Chemistry and Physics, 2017, 17, 6113-6124.	1.9	28
18	Global clear-sky surface skin temperature from multiple satellites using a single-channel algorithm with angular anisotropy corrections. Atmospheric Measurement Techniques, 2017, 10, 351-371.	1.2	6

K M Bedka

#	Article	IF	CITATIONS
19	A Probabilistic Multispectral Pattern Recognition Method for Detection of Overshooting Cloud Tops Using Passive Satellite Imager Observations. Journal of Applied Meteorology and Climatology, 2016, 55, 1983-2005.	0.6	54
20	A Method for Calculating the Height of Overshooting Convective Cloud Tops Using Satellite-Based IR Imager and CloudSat Cloud Profiling Radar Observations. Journal of Applied Meteorology and Climatology, 2016, 55, 479-491.	0.6	29
21	Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1608-1619.	1.2	142
22	Examining Deep Convective Cloud Evolution Using Total Lightning, WSR-88D, and GOES-14 Super Rapid Scan Datasets*. Weather and Forecasting, 2015, 30, 571-590.	0.5	50
23	Dispersion of the Nabro volcanic plume and its relation to the Asian summer monsoon. Atmospheric Chemistry and Physics, 2014, 14, 7045-7057.	1.9	59
24	A-Train observations of deep convective storm tops. Atmospheric Research, 2013, 123, 229-248.	1.8	42
25	Comment on "Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport". Science, 2013, 339, 647-647.	6.0	48
26	Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOES-R. Journal of Applied Remote Sensing, 2013, 7, 1.	0.6	43
27	Comparison between GOES-12 Overshooting-Top Detections, WSR-88D Radar Reflectivity, and Severe Storm Reports. Weather and Forecasting, 2012, 27, 684-699.	0.5	63
28	Validation of Satellite-Based Objective Overshooting Cloud-Top Detection Methods Using CloudSat Cloud Profiling Radar Observations. Journal of Applied Meteorology and Climatology, 2012, 51, 1811-1822.	0.6	36
29	Overshooting cloud top detections using MSG SEVIRI Infrared brightness temperatures and their relationship to severe weather over Europe. Atmospheric Research, 2011, 99, 175-189.	1.8	100
30	Objective Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness Temperature Gradients. Journal of Applied Meteorology and Climatology, 2010, 49, 181-202.	0.6	170
31	Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering. Journal of Geophysical Research, 2008, 113, .	3.3	61