Thomas Eich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8648592/publications.pdf

Version: 2024-02-01

31902 39575 10,017 173 53 citations h-index papers

g-index 173 173 173 2897 docs citations times ranked citing authors all docs

94

#	Article	IF	CITATIONS
1	Chapter 4: Power and particle control. Nuclear Fusion, 2007, 47, S203-S263.	1.6	891
2	Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER. Plasma Physics and Controlled Fusion, 2003, 45, 1549-1569.	0.9	487
3	Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER. Nuclear Fusion, 2013, 53, 093031.	1.6	448
4	First Observation of Edge Localized Modes Mitigation with Resonant and Nonresonant Magnetic Perturbations in ASDEX Upgrade. Physical Review Letters, 2011, 106, 225004.	2.9	428
5	Inter-ELM Power Decay Length for JET and ASDEX Upgrade: Measurement and Comparison with Heuristic Drift-Based Model. Physical Review Letters, 2011, 107, 215001.	2.9	370
6	Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO. Plasma Physics and Controlled Fusion, 2013, 55, 124041.	0.9	303
7	ELM pace making and mitigation by pellet injection in ASDEX Upgrade. Nuclear Fusion, 2004, 44, 665-677.	1.6	200
8	Partial detachment of high power discharges in ASDEX Upgrade. Nuclear Fusion, 2015, 55, 053026.	1.6	163
9	Characteristics and scaling of energy and particle losses during Type I ELMs in JET H-modes. Plasma Physics and Controlled Fusion, 2002, 44, 1815-1844.	0.9	153
10	Nonaxisymmetric Energy Deposition Pattern on ASDEX Upgrade Divertor Target Plates during Type-I Edge-Localized Modes. Physical Review Letters, 2003, 91, 195003.	2.9	153
11	Disruption mitigation by massive gas injection in JET. Nuclear Fusion, 2011, 51, 123010.	1.6	148
12	Filament structures at the plasma edge on MAST. Plasma Physics and Controlled Fusion, 2006, 48, B433-B441.	0.9	143
13	Overview of the results on divertor heat loads in RMP controlled H-mode plasmas on DIII-D. Nuclear Fusion, 2009, 49, 095013.	1.6	136
14	ELM frequency control by continuous small pellet injection in ASDEX Upgrade. Nuclear Fusion, 2003, 43, 1110-1120.	1.6	125
15	Transient heat loads in current fusion experiments, extrapolation to ITER and consequences for its operation. Physica Scripta, 2007, T128, 222-228.	1.2	124
16	Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall. Nuclear Fusion, 2013, 53, 113025.	1.6	118
17	Plasma surface interactions in impurity seeded plasmas. Journal of Nuclear Materials, 2011, 415, S19-S26.	1.3	116
18	ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade. Nuclear Materials and Energy, 2017, 12, 84-90.	0.6	116

#	Article	IF	Citations
19	Type-I ELM substructure on the divertor target plates in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2005, 47, 815-842.	0.9	112
20	Plasma wall interaction and its implication in an all tungsten divertor tokamak. Plasma Physics and Controlled Fusion, 2007, 49, B59-B70.	0.9	110
21	Steady state advanced scenarios at ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2002, 44, B69-B83.	0.9	108
22	DEMO divertor limitations during and in between ELMs. Nuclear Fusion, 2014, 54, 114003.	1.6	107
23	Optimized tokamak power exhaust with double radiative feedback in ASDEX Upgrade. Nuclear Fusion, 2012, 52, 122003.	1.6	106
24	Characterization of pedestal parameters and edge localized mode energy losses in the Joint European Torus and predictions for the International Thermonuclear Experimental Reactor. Physics of Plasmas, 2004, 11, 2668-2678.	0.7	104
25	Edge and divertor physics with reversed toroidal field in JET. Journal of Nuclear Materials, 2005, 337-339, 146-153.	1.3	96
26	Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET. Nuclear Materials and Energy, 2017, 12, 111-118.	0.6	92
27	Reduction of divertor heat load in JET ELMy H-modes using impurity seeding techniques. Nuclear Fusion, 2004, 44, 312-319.	1.6	91
28	Type-I ELM power deposition profile width and temporal shape in JET. Journal of Nuclear Materials, 2011, 415, S856-S859.	1.3	90
29	Edge localized mode physics and operational aspects in tokamaks. Plasma Physics and Controlled Fusion, 2003, 45, A93-A113.	0.9	88
30	Effect of resonant magnetic perturbations on low collisionality discharges in MAST and a comparison with ASDEX Upgrade. Nuclear Fusion, 2015, 55, 043011.	1.6	85
31	ELM transport in the JET scrape-off layer. Nuclear Fusion, 2007, 47, 1437-1448.	1.6	84
32	The physics and technology basis entering European system code studies for DEMO. Nuclear Fusion, 2017, 57, 016011.	1.6	84
33	Power deposition onto plasma facing components in poloidal divertor tokamaks during type-I ELMs and disruptions. Journal of Nuclear Materials, 2005, 337-339, 669-676.	1.3	76
34	Impact of the ITER-like wall on divertor detachment and on the density limit in the JET tokamak. Journal of Nuclear Materials, 2013, 438, S139-S147.	1.3	76
35	ELM resolved energy distribution studies in the JET MKII Gas-Box divertor using infra-red thermography. Plasma Physics and Controlled Fusion, 2007, 49, 573-604.	0.9	75
36	Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification. Nuclear Fusion, 2017, 57, 116041.	1.6	75

#	Article	IF	CITATIONS
37	Edge localized modes: recent experimental findings and related issues. Plasma Physics and Controlled Fusion, 2007, 49, S43-S62.	0.9	74
38	Stationary and transient divertor heat flux profiles and extrapolation to ITER. Journal of Nuclear Materials, 2003, 313-316, 759-767.	1.3	71
39	The spatial structure of type-I ELMs at the mid-plane in ASDEX Upgrade and a comparison with data from MAST. Plasma Physics and Controlled Fusion, 2005, 47, 995-1013.	0.9	71
40	Disruption studies in ASDEX Upgrade in view of ITER. Plasma Physics and Controlled Fusion, 2009, 51, 124056.	0.9	71
41	Studies of edge localized mode mitigation with new active in-vessel saddle coils in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2011, 53, 124014.	0.9	71
42	The H-mode density limit in the full tungsten ASDEX Upgrade tokamak. Plasma Physics and Controlled Fusion, 2015, 57, 014038.	0.9	70
43	Compatibility of ITER scenarios with full tungsten wall in ASDEX Upgrade. Nuclear Fusion, 2009, 49, 115014.	1.6	68
44	Real time capable infrared thermography for ASDEX Upgrade. Review of Scientific Instruments, 2015, 86, 113502.	0.6	67
45	Power deposition outside the divertor in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2004, 46, 971-979.	0.9	66
46	Empiricial scaling of inter-ELM power widths in ASDEX Upgrade and JET. Journal of Nuclear Materials, 2013, 438, S72-S77.	1.3	65
47	EDGE2D modelling of edge profiles obtained in JET diagnostic optimized configuration. Plasma Physics and Controlled Fusion, 2004, 46, 431-446.	0.9	64
48	Application of AXUV diode detectors at ASDEX Upgrade. Review of Scientific Instruments, 2014, 85, 033503.	0.6	63
49	Estimation of edge electron temperature profiles via forward modelling of the electron cyclotron radiation transport at ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2013, 55, 025004.	0.9	62
50	Turbulence driven widening of the near-SOL power width in ASDEX Upgrade H-Mode discharges. Nuclear Fusion, 2020, 60, 056016.	1.6	62
51	Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix. Nuclear Fusion, 2018, 58, 034001.	1.6	57
52	Characterization of the H-mode edge barrier at ASDEX Upgrade. Nuclear Fusion, 2005, 45, 856-862.	1.6	55
53	Active control of type-l edge localized modes on JET. Plasma Physics and Controlled Fusion, 2007, 49, B581-B589.	0.9	54
54	Outer target heat fluxes and power decay length scaling in L-mode plasmas at JET and AUG. Journal of Nuclear Materials, 2013, 438, S426-S430.	1.3	53

#	Article	IF	Citations
55	Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertor. Review of Scientific Instruments, 2012, 83, 10D530.	0.6	52
56	Overview of the TCV tokamak program: scientific progress and facility upgrades. Nuclear Fusion, 2017, 57, 102011.	1.6	52
57	Power load studies in JET and ASDEX-Upgrade with full-W divertors. Plasma Physics and Controlled Fusion, 2013, 55, 124039.	0.9	51
58	Study of near scrape-off layer (SOL) temperature and density gradient lengths with Thomson scattering. Plasma Physics and Controlled Fusion, 2015, 57, 125011.	0.9	49
59	Strike-point splitting induced by external magnetic perturbations: Observations on JET and MAST and associated modelling. Journal of Nuclear Materials, 2011, 415, S914-S917.	1.3	48
60	Confinement properties of high density impurity seeded ELMy H-mode discharges at low and high triangularity on JET. Plasma Physics and Controlled Fusion, 2002, 44, 1845-1861.	0.9	47
61	Investigation of scrape-off layer and divertor heat transport in ASDEX Upgrade L-mode. Plasma Physics and Controlled Fusion, 2016, 58, 055015.	0.9	47
62	Parameter dependences of small edge localized modes (ELMs). Nuclear Fusion, 2018, 58, 112001.	1.6	47
63	First modelling of the TEXTOR DED near field divertor. Nuclear Fusion, 1998, 38, 515-529.	1.6	46
64	ELM mitigation by nitrogen seeding in the JET gas box divertor. Plasma Physics and Controlled Fusion, 2002, 44, 639-652.	0.9	46
65	Integrated exhaust scenarios with actively controlled ELMs. Nuclear Fusion, 2005, 45, 502-511.	1.6	46
66	Interpretation of divertor Langmuir probe measurements during the ELMs at JET. Journal of Nuclear Materials, 2011, 415, S860-S864.	1.3	44
67	Survey of Type I ELM dynamics measurements. Plasma Physics and Controlled Fusion, 2006, 48, A149-A162.	0.9	43
68	Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond. Nuclear Fusion, 2019, 59, 112023.	1.6	43
69	On the asymmetries of ELM divertor power deposition in JET and ASDEX Upgrade. Journal of Nuclear Materials, 2009, 390-391, 760-763.	1.3	42
70	Two dimensional modelling approach to transport properties of the TEXTOR-DED laminar zone. Nuclear Fusion, 2000, 40, 1757-1772.	1.6	41
71	Impurity-seeded ELMy H-modes in JET, with high density and reduced heat load. Nuclear Fusion, 2005, 45, 1404-1410.	1.6	40
72	Change of the scrape-off layer power width with the toroidal B-field direction in ASDEX upgrade. Plasma Physics and Controlled Fusion, 2015, 57, 075005.	0.9	40

#	Article	IF	Citations
73	Characterization of edge profiles and fluctuations in discharges with type-II and nitrogen-mitigated edge localized modes in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2011, 53, 085026.	0.9	39
74	Divertor power deposition and target current asymmetries during type-I ELMs in ASDEX Upgrade and JET. Journal of Nuclear Materials, 2007, 363-365, 989-993.	1.3	38
75	Overview of physics studies on ASDEX Upgrade. Nuclear Fusion, 2019, 59, 112014.	1.6	38
76	Observation of Confined Current Ribbon in JET Plasmas. Physical Review Letters, 2010, 104, 185003.	2.9	37
77	Strike point splitting in the heat and particle flux profiles compared with the edge magnetic topology in a nÂ=Â2 resonant magnetic perturbation field at JET. Nuclear Fusion, 2012, 52, 054009.	1.6	36
78	Overview of ASDEX Upgrade results. Nuclear Fusion, 2013, 53, 104003.	1.6	36
79	Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade. Nuclear Fusion, 2019, 59, 086020.	1.6	34
80	2D ECE measurements of type-I edge localized modes at ASDEX Upgrade. Nuclear Fusion, 2011, 51, 103039.	1.6	33
81	Multi-parameter scaling of divertor power load profiles in D, H and He plasmas on JET and implications for ITER. Nuclear Fusion, 2011, 51, 083028.	1.6	31
82	Parameter dependences of the separatrix density in nitrogen seeded ASDEX Upgrade H-mode discharges. Plasma Physics and Controlled Fusion, 2018, 60, 045006.	0.9	31
83	Scaling of the divertor power spreading (S-factor) in open and closed divertor operation in JET and ASDEX Upgrade. Journal of Nuclear Materials, 2015, 463, 49-54.	1.3	30
84	The separatrix operational space of ASDEX Upgrade due to interchange-drift-Alfvén turbulence. Nuclear Fusion, 2021, 61, 086017.	1.6	30
85	Overview of experimental preparation for the ITER-Like Wall at JET. Journal of Nuclear Materials, 2011, 415, S936-S942.	1.3	29
86	Scrape-off layer (SOL) power width scaling and correlation between SOL and pedestal gradients across L, I and H-mode plasmas at ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2020, 62, 045015.	0.9	29
87	Overview of ASDEX Upgrade results—development of integrated operating scenarios for ITER. Nuclear Fusion, 2005, 45, S98-S108.	1.6	28
88	Overview of ASDEX Upgrade results. Nuclear Fusion, 2011, 51, 094012.	1.6	27
89	Electron temperature and heat load measurements in the COMPASS divertor using the new system of probes. Nuclear Fusion, 2017, 57, 116017.	1.6	27
90	Power load characterization for type-I ELMy H-modes in JET. Nuclear Fusion, 2011, 51, 123001.	1.6	26

#	Article	IF	Citations
91	Integrated simulations of H-mode operation in ITER including core fuelling, divertor detachment and ELM control. Nuclear Fusion, 2018, 58, 056020.	1.6	26
92	Neutral pressure and separatrix density related models for seed impurity divertor radiation in ASDEX Upgrade. Nuclear Materials and Energy, 2019, 18, 166-174.	0.6	26
93	Broadening of the power fall-off length in a high density, high confinement H-mode regime in ASDEX Upgrade. Nuclear Materials and Energy, 2021, 26, 100890.	0.6	26
94	ITER-relevant H-mode physics at ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2004, 46, B511-B525.	0.9	24
95	Interpretation of radiative divertor studies with impurity seeding in type-I ELMy H-mode plasmas in JET-ILW using EDGE2D–EIRENE. Journal of Nuclear Materials, 2015, 463, 135-142.	1.3	24
96	Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes. Review of Scientific Instruments, 2017, 88, 033509.	0.6	24
97	Divertor heat load in ASDEX Upgrade L-mode in presence of external magnetic perturbation. Plasma Physics and Controlled Fusion, 2017, 59, 095006.	0.9	24
98	Integrated modelling of a JET type-I ELMy H-mode pulse and predictions for ITER-like wall scenarios. Plasma Physics and Controlled Fusion, 2011, 53, 124039.	0.9	23
99	Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution ^a . Nuclear Fusion, 2017, 57, 102014.	1.6	23
100	Dependence of the L-Mode scrape-off layer power fall-off length on the upper triangularity in TCV. Plasma Physics and Controlled Fusion, 2018, 60, 045010.	0.9	23
101	Stationarity of I-mode operation and I-mode divertor heat fluxes on the ASDEX Upgrade tokamak. Nuclear Materials and Energy, 2019, 18, 159-165.	0.6	23
102	Radiation distribution and energy balance during type-I ELMs in ASDEX Upgrade. Journal of Nuclear Materials, 2005, 337-339, 756-760.	1.3	22
103	Heat load measurements on the JET first wall during disruptions. Journal of Nuclear Materials, 2011, 415, S817-S820.	1.3	22
104	Poloidal distribution of recycling sources and core plasma fueling in DIII-D, ASDEX-Upgrade and JET L-mode plasmas. Plasma Physics and Controlled Fusion, 2011, 53, 124017.	0.9	22
105	A study on the density shoulder formation in the SOL of H-mode plasmas. Nuclear Materials and Energy, 2017, 12, 1189-1193.	0.6	22
106	Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane. Review of Scientific Instruments, 2010, 81, 10E132.	0.6	21
107	Influence of cross-field drifts and chemical sputtering on simulations of divertor particle and heat loads in ohmic and L-mode plasmas in DIII-D, AUG, and JET using UEDGE. Journal of Nuclear Materials, 2011, 415, S530-S534.	1.3	21
108	Interpretation of recent power width measurements in JET MkIIGB ELMy H-modes. Plasma Physics and Controlled Fusion, 2002, 44, 761-793.	0.9	20

#	Article	IF	Citations
109	Overview of ASDEX Upgrade results. Nuclear Fusion, 2003, 43, 1570-1582.	1.6	20
110	Physical mechanism behind and access to the I-mode confinement regime in tokamaks. Nuclear Fusion, 2020, $60,096011$.	1.6	20
111	I-mode pedestal relaxation events at ASDEX Upgrade. Nuclear Fusion, 2020, 60, 126028.	1.6	20
112	Seeding of impurities in JET H-mode discharges to mitigate the impact of ELMs. Plasma Physics and Controlled Fusion, 2002, 44, 1879-1891.	0.9	19
113	Optimization of the computation of total and local radiated power at ASDEX Upgrade. Nuclear Fusion, 2021, 61, 066025.	1.6	19
114	First-Principles Density Limit Scaling in Tokamaks Based on Edge Turbulent Transport and Implications for ITER. Physical Review Letters, 2022, 128, 185003.	2.9	19
115	Data acquisition and real-time signal processing of plasma diagnostics on ASDEX Upgrade using LabVIEW RT. Fusion Engineering and Design, 2010, 85, 303-307.	1.0	18
116	Radiation loads onto plasma-facing components of JET during transient events – Experimental results and implications for ITER. Journal of Nuclear Materials, 2011, 415, S821-S827.	1.3	18
117	Modification of scrape-off layer transport and turbulence by non-axisymmetric magnetic perturbations in ASDEX Upgrade. Journal of Nuclear Materials, 2013, 438, S64-S71.	1.3	18
118	Study of near SOL decay lengths in ASDEX Upgrade under attached and detached divertor conditions. Plasma Physics and Controlled Fusion, 2017, 59, 105010.	0.9	18
119	The ASDEX Upgrade divertor Ilb—a closed divertor for strongly shaped plasmas. Nuclear Fusion, 2003, 43, 1191-1196.	1.6	17
120	Solitary magnetic perturbations at the ELM onset. Nuclear Fusion, 2012, 52, 114025.	1.6	17
121	Intermittent transport across the scrape-off layer: latest results from ASDEX Upgrade. Nuclear Fusion, 2013, 53, 073047.	1.6	17
122	Plasma rotation induced by the Dynamic Ergodic Divertor. Nuclear Fusion, 2001, 41, 503-511.	1.6	16
123	Observation of the palm tree mode, a new MHD mode excited by type-I ELMs on JET. Nuclear Fusion, 2005, 45, 201-208.	1.6	16
124	Power and particle fluxes to plasma-facing components in mitigated-ELM H-mode discharges on JET. Journal of Nuclear Materials, 2011, 415, S894-S900.	1.3	16
125	Type-I ELM filamentary substructure on the JET divertor target. Journal of Nuclear Materials, 2011, 415, 5865-S868.	1.3	16
126	Power handling of a segmented bulk W tile for JET under realistic plasma scenarios. Journal of Nuclear Materials, 2011, 415, S943-S947.	1.3	16

#	Article	IF	Citations
127	Target particle and heat loads in low-triangularity L-mode plasmas in JET with carbon and beryllium/tungsten walls. Journal of Nuclear Materials, 2013, 438, S175-S179.	1.3	16
128	Effect of nitrogen seeding on the energy losses and on the time scales of the electron temperature and density collapse of type-I ELMs in JET with the ITER-like wall. Nuclear Fusion, 2015, 55, 023007.	1.6	16
129	Insights into typeâ€l edge localized modes and edge localized mode control from JOREK nonâ€linear magnetoâ€hydrodynamic simulations. Contributions To Plasma Physics, 2018, 58, 518-528.	0.5	16
130	Moderation of target loads using fuelling and impurity seeding on JET. Journal of Nuclear Materials, 2011, 415, S313-S317.	1.3	15
131	Comparison between dominant NB and dominant IC heated ELMy H-mode discharges in JET. Nuclear Fusion, 2011, 51, 103033.	1.6	15
132	Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development. Nuclear Fusion, 2022, 62, 042006.	1.6	15
133	Steady-state and transient power handling in JET. Nuclear Fusion, 2003, 43, 999-1005.	1.6	14
134	Thermal analysis of an exposed tungsten edge in the JET divertor. Journal of Nuclear Materials, 2015, 463, 415-419.	1.3	14
135	First measurements of edge localized mode ion energies in the ASDEX Upgrade far scrape-off layer. Plasma Physics and Controlled Fusion, 2011, 53, 065002.	0.9	13
136	Simulations of tungsten transport in the edge of JET ELMy H-mode plasmas. Journal of Nuclear Materials, 2013, 438, S1005-S1009.	1.3	13
137	Comparative H-mode density limit studies in JET and AUG. Nuclear Materials and Energy, 2017, 12, 100-110.	0.6	13
138	2D heat flux in ASDEX Upgrade L-Mode with magnetic perturbation. Nuclear Materials and Energy, 2017, 12, 1020-1024.	0.6	13
139	Progress in extrapolating divertor heat fluxes towards large fusion devices. Physica Scripta, 2017, T170, 014071.	1.2	13
140	Scrape-off layer power fall-off length from turbulence simulations of ASDEX Upgrade L-mode. Plasma Physics and Controlled Fusion, 2018, 60, 085018.	0.9	13
141	Overview of ELM Control by Low n Magnetic Perturbations on JET. Plasma and Fusion Research, 2010, 5, S2018-S2018.	0.3	13
142	High density, high performance high-confinement-mode plasmas in the Joint European Torus (JET). Physics of Plasmas, 2002, 9, 2103-2112.	0.7	12
143	Real time magnetic field and flux measurements for tokamak control using a multi-core PCI Express system. Fusion Engineering and Design, 2009, 84, 825-828.	1.0	12
144	Assessment of divertor heat load with and without external magnetic perturbation. Nuclear Fusion, 2017, 57, 066045.	1.6	12

#	Article	IF	Citations
145	Overview of ASDEX Upgrade results. Nuclear Fusion, 2009, 49, 104009.	1.6	11
146	Radiative type-III ELMy H-mode in all-tungsten ASDEX Upgrade. Nuclear Fusion, 2012, 52, 122002.	1.6	11
147	Divertor load footprint of ELMs in pellet triggering and pacing experiments at JET. Journal of Nuclear Materials, 2015, 463, 714-717.	1.3	11
148	Full- $\langle i \rangle$ f $\langle i \rangle$ electromagnetic gyrokinetic turbulence simulations of the edge and scrape-off layer of ASDEX Upgrade with GENE-X. Physics of Plasmas, 2022, 29, .	0.7	11
149	Real-Time Infrared Thermography at ASDEX Upgrade. Fusion Science and Technology, 2016, 69, 580-585.	0.6	10
150	A wall-aligned grid generator for non-linear simulations of MHD instabilities in tokamak plasmas. Computer Physics Communications, 2019, 243, 41-50.	3.0	10
151	Data acquisition and real-time bolometer tomography using LabVIEW RT. Fusion Engineering and Design, 2011, 86, 1129-1132.	1.0	9
152	Radiation losses of type-I ELMs during impurity seeding experiments in the full tungsten ASDEX Upgrade. Journal of Nuclear Materials, 2011, 415, S852-S855.	1.3	9
153	Experimental sheath heat transmission factors in diverted plasmas in JET. Journal of Nuclear Materials, 2013, 438, S393-S396.	1.3	9
154	Type-I ELM power loads on the closed outer divertor targets in the HL-2A tokamak. Nuclear Fusion, 2021, 61, 066024.	1.6	9
155	Synthetic edge and scrape-off layer diagnostics—a bridge between experiments and theory. Nuclear Fusion, 2019, 59, 086059.	1.6	8
156	Effect of magnetic perturbations for ELM control on divertor power loads, detachment and consequences of field penetration in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2019, 61, 014008.	0.9	8
157	Relating the near SOL transport with plasma properties of the confined edge region in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2018, , .	0.9	7
158	Role of electric currents for the SOL and divertor target heat fluxes in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2020, 62, 105014.	0.9	7
159	I-mode pedestal relaxation events in the Alcator C-Mod and ASDEX Upgrade tokamaks. Nuclear Fusion, 2022, 62, 036004.	1.6	7
160	Edge transport and fuelling studies via gas puff modulation in ASDEX Upgrade L-mode plasmas. Nuclear Fusion, 2022, 62, 066035.	1.6	7
161	Density dependence of SOL power width in ASDEX upgrade L-Mode. Nuclear Materials and Energy, 2017, 12, 216-220.	0.6	6
162	Material deposition and migration processes with resonant magnetic perturbation fields at TEXTOR. Journal of Nuclear Materials, 2013, 438, S602-S606.	1.3	5

#	Article	IF	CITATIONS
163	Effect of plasma geometry on divertor heat flux spreading: MONALISA simulations and experimental results from TCV. Nuclear Materials and Energy, 2017, 12, 893-898.	0.6	5
164	Correlation between near scrape-off layer power fall-off length and confinement properties in JET operated with carbon and ITER-like wall. Plasma Physics and Controlled Fusion, 2020, 62, 085004.	0.9	5
165	High-heat flux ball-pen probe head in ASDEX-Upgrade. Review of Scientific Instruments, 2022, 93, 023507.	0.6	5
166	Gyrofluid simulation of an I-mode pedestal relaxation event. Physics of Plasmas, 2021, 28, 102502.	0.7	4
167	Topological properties of the edge ergodic layer in tokamak plasma. IEEE Transactions on Plasma Science, 2002, 30, 66-67.	0.6	2
168	Improved equilibrium reconstructions by advanced statistical weighting of the internal magnetic measurements. Review of Scientific Instruments, 2014, 85, 123507.	0.6	2
169	Dynamic power balance analysis in JET. Physica Scripta, 2017, T170, 014035.	1.2	2
170	Effect of magnetic perturbation fields on power decay length in EMC3-EIRENE simulations and comparison to experiment in ASDEX upgrade. Nuclear Materials and Energy, 2019, 19, 205-210.	0.6	2
171	Empirical study of gradient lengths ratio η e in the near SOL region in ASDEX Upgrade tokamak. Plasma Physics and Controlled Fusion, 2020, 62, 025005.	0.9	2
172	Coupling between JET pedestal ne–Te and outer target plate recycling. Journal of Nuclear Materials, 2011, 415, S421-S424.	1.3	1
173	Analytic 1D approximation of the divertor broadening S in the divertor region for conductive heat transport. Plasma Physics and Controlled Fusion, 2019, 61, 085016.	0.9	0