Jie Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8648486/publications.pdf Version: 2024-02-01

		430442	414034	
32	1,176	18	32	
papers	citations	h-index	g-index	
32	32	32	1650	
all docs	docs citations	times ranked	citing authors	

LE CAL

#	Article	IF	CITATIONS
1	High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers. ACS Applied Materials & Interfaces, 2015, 7, 14946-14953.	4.0	189
2	High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers. Journal of Power Sources, 2016, 324, 302-308.	4.0	124
3	Electrospun composite nanofiber mats of Cellulose@Organically modified montmorillonite for heavy metal ion removal: Design, characterization, evaluation of absorption performance. Composites Part A: Applied Science and Manufacturing, 2017, 92, 10-16.	3.8	87
4	Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: Mechanical and optical properties. Carbohydrate Polymers, 2016, 140, 238-245.	5.1	82
5	Thermal properties and crystallization behavior of thermoplastic starch/poly(É>-caprolactone) composites. Carbohydrate Polymers, 2014, 102, 746-754.	5.1	59
6	Facile microencapsulation of olive oil in porous starch granules: Fabrication, characterization, and oxidative stability. International Journal of Biological Macromolecules, 2018, 111, 755-761.	3.6	59
7	Starch/tea polyphenols nanofibrous films for food packaging application: From facile construction to enhance mechanical, antioxidant and hydrophobic properties. Food Chemistry, 2021, 360, 129922.	4.2	59
8	Acylation of blueberry anthocyanins with maleic acid: Improvement of the stability and its application potential in intelligent color indicator packing materials. Dyes and Pigments, 2021, 184, 108852.	2.0	49
9	Citric acid-incorporated cellulose nanofibrous mats as food materials-based biosorbent for removal of hexavalent chromium from aqueous solutions. International Journal of Biological Macromolecules, 2020, 149, 459-466.	3.6	48
10	Hydrophobic Interface Starch Nanofibrous Film for Food Packaging: From Bioinspired Design to Self-Cleaning Action. Journal of Agricultural and Food Chemistry, 2021, 69, 5067-5075.	2.4	38
11	Polysaccharide-Based Hydrogels Derived from Cellulose: The Architecture Change from Nanofibers to Hydrogels for a Putative Dual Function in Dye Wastewater Treatment. Journal of Agricultural and Food Chemistry, 2020, 68, 9725-9732.	2.4	37
12	Preparation of Lipid-Soluble Bilberry Anthocyanins through Acylation with Cinnamic Acids and their Antioxidation Activities. Journal of Agricultural and Food Chemistry, 2020, 68, 7467-7473.	2.4	37
13	Surface acetylation of bamboo cellulose: Preparation and rheological properties. Carbohydrate Polymers, 2013, 92, 11-18.	5.1	31
14	Promising Rice-Husk-Derived Carbon/Ni(OH) ₂ Composite Materials as a High-Performing Supercapacitor Electrode. ACS Omega, 2020, 5, 29896-29902.	1.6	29
15	Effects of nanoâ€īiO ₂ on the properties and structures of starch/poly(εâ€caprolactone) composites. Journal of Applied Polymer Science, 2013, 130, 4129-4136.	1.3	24
16	<i>In Situ</i> Synthesis of Ag–Fe ₃ O ₄ Nanoparticles Immobilized on Pure Cellulose Microspheres as Recyclable and Biodegradable Catalysts. ACS Omega, 2020, 5, 8839-8846.	1.6	23
17	Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment. Ultrasonics Sonochemistry, 2021, 74, 105568.	3.8	23
18	Green Synthesis of Robust Selenium Nanoparticles via Polysaccharide–Polyphenol Interaction: Design Principles and Structure–Bioactivity Relationship. ACS Sustainable Chemistry and Engineering, 2022, 10, 2052-2062.	3.2	22

JIE CAI

#	Article	IF	CITATIONS
19	Synthesis of H 2 Ti 2 O 3 ·H 2 O nanotubes and their effects on the flame retardancy of bamboo fiber/high-density polyethylene composites. Composites Part A: Applied Science and Manufacturing, 2016, 90, 225-233.	3.8	21
20	The enhancement of the flame retardance of bamboo fibre/HDPE composites: Cerium doped H2Ti2O5·H2O nanotubes effects. Construction and Building Materials, 2019, 201, 728-735.	3.2	19
21	Bamboo cellulose-derived cellulose acetate for electrospun nanofibers: synthesis, characterization and kinetics. Cellulose, 2018, 25, 391-398.	2.4	17
22	Functional nanoparticle reinforced starch-based adhesive emulsion: Toward robust stability and high bonding performance. Carbohydrate Polymers, 2021, 269, 118270.	5.1	17
23	Robust Construction of Flexible Bacterial Cellulose@Ni(OH) Paper: Toward High 2 Capacitance and Sensitive H2O2 Detection. Engineered Science, 2018, , .	1.2	16
24	The use of solvent-soaking treatment to enhance the anisotropic mechanical properties of electrospun nanofiber membranes for water filtration. RSC Advances, 2016, 6, 66807-66813.	1.7	13
25	Effect of solvent treatment on morphology, crystallinity and tensile properties of cellulose acetate nanofiber mats. Journal of the Textile Institute, 2017, 108, 555-561.	1.0	13
26	A combination of coarse-grain molecular dynamics to investigate the effects of sodium dodecyl sulfate on grafted reaction of starch-based adhesive. Carbohydrate Polymers, 2019, 218, 20-29.	5.1	10
27	Parameters characterizing the kinetics of the nonisothermal crystallization of thermoplastic starch/poly(lactic acid) composites as determined by differential scanning calorimetry. Journal of Applied Polymer Science, 2013, 129, 3566-3573.	1.3	7
28	The Improvement of Sensory and Bioactive Properties of Yogurt with the Introduction of Tartary Buckwheat. Foods, 2022, 11, 1774.	1.9	7
29	Optimization of Spray-Drying Process of Jerusalem artichoke Extract for Inulin Production. Molecules, 2019, 24, 1674.	1.7	5
30	Interfacial modification of starch at high concentration by sodium dodecylsulfate as revealed by experiments and molecular simulation. Journal of Molecular Liquids, 2020, 310, 113190.	2.3	4
31	One-pot fabrication of cellulose-collagen fibrous networks for potential use as wound dressing: From characterization to first evaluation of cytocompatibility. BioResources, 2020, 15, 2501-2511.	0.5	4
32	Formation of H2Ti2O5·H2O nanotube-based hybrid coating on bamboo fibre materials through layer-by-layer self-assembly method for an improved flame retardant performance. Cellulose, 2019, 26, 2729-2741.	2.4	3