
J Andrew Mccammon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8648272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 2004, 32, W665-W667.	14.5	3,014
2	Molecular dynamics simulations of biomolecules. Nature Structural Biology, 2002, 9, 646-652.	9.7	2,473
3	Dynamics of folded proteins. Nature, 1977, 267, 585-590.	27.8	1,731
4	Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics, 2006, 22, 2695-2696.	4.1	1,440
5	Improvements to the <scp>APBS</scp> biomolecular solvation software suite. Protein Science, 2018, 27, 112-128.	7.6	1,399
6	Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. Journal of Chemical Physics, 2004, 120, 11919-11929.	3.0	1,313
7	Molecular Dynamics:Â Survey of Methods for Simulating the Activity of Proteins. Chemical Reviews, 2006, 106, 1589-1615.	47.7	1,007
8	Molecular dynamics simulations and drug discovery. BMC Biology, 2011, 9, 71.	3.8	881
9	Electrostatics in biomolecular structure and dynamics. Chemical Reviews, 1990, 90, 509-521.	47.7	643
10	Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation. Journal of Chemical Theory and Computation, 2015, 11, 3584-3595.	5.3	544
11	The Internal Dynamics of Globular Protein. Critical Reviews in Biochemistry, 1981, 9, 293-349.	7.5	488
12	The Determinants of pKas in Proteins. Biochemistry, 1996, 35, 7819-7833.	2.5	439
13	Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics. Journal of Chemical Theory and Computation, 2012, 8, 2997-3002.	5.3	435
14	Computational Drug Design Accommodating Receptor Flexibility:Â The Relaxed Complex Scheme. Journal of the American Chemical Society, 2002, 124, 5632-5633.	13.7	401
15	Brownian dynamics simulation of diffusionâ€influenced bimolecular reactions. Journal of Chemical Physics, 1984, 80, 1517-1524.	3.0	360
16	The hinge-bending mode in lysozyme. Nature, 1976, 262, 325-326.	27.8	349
17	Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation. Journal of Chemical Theory and Computation, 2014, 10, 2677-2689.	5.3	344
18	Discovery of a Novel Binding Trench in HIV Integrase. Journal of Medicinal Chemistry, 2004, 47, 1879-1881.	6.4	341

#	Article	IF	CITATIONS
19	Ewald artifacts in computer simulations of ionic solvation and ion–ion interaction: A continuum electrostatics study. Journal of Chemical Physics, 1999, 110, 1856-1872.	3.0	325
20	Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation. The Journal of Physical Chemistry, 1993, 97, 3591-3600.	2.9	324
21	Ensemble Docking in Drug Discovery. Biophysical Journal, 2018, 114, 2271-2278.	0.5	318
22	Allostery in Its Many Disguises: From Theory to Applications. Structure, 2019, 27, 566-578.	3.3	285
23	An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. Journal of Computer-Aided Molecular Design, 2008, 22, 693-705.	2.9	283
24	Developing a Dynamic Pharmacophore Model for HIV-1 Integrase. Journal of Medicinal Chemistry, 2000, 43, 2100-2114.	6.4	271
25	A glycan gate controls opening of the SARS-CoV-2 spike protein. Nature Chemistry, 2021, 13, 963-968.	13.6	254
26	Water in Cavityâ ``Ligand Recognition. Journal of the American Chemical Society, 2010, 132, 12091-12097.	13.7	236
27	Conformation gating as a mechanism for enzyme specificity. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9280-9283.	7.1	221
28	HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: Possible contributions to drug resistance and a potential new target site for drugs. Protein Science, 2004, 13, 1108-1123.	7.6	217
29	Trapping the dynamic acyl carrier protein in fatty acid biosynthesis. Nature, 2014, 505, 427-431.	27.8	216
30	Large conformational changes in proteins: signaling and other functions. Current Opinion in Structural Biology, 2010, 20, 142-147.	5.7	213
31	Activation and dynamic network of the M2 muscarinic receptor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10982-10987.	7.1	210
32	Stochastically gated diffusionâ€influenced reactions. Journal of Chemical Physics, 1982, 77, 4484-4493.	3.0	205
33	How Can Hydrophobic Association Be Enthalpy Driven?. Journal of Chemical Theory and Computation, 2010, 6, 2866-2871.	5.3	205
34	Ensemble-Based Virtual Screening Reveals Potential Novel Antiviral Compounds for Avian Influenza Neuraminidase. Journal of Medicinal Chemistry, 2008, 51, 3878-3894.	6.4	195
35	POVME: An algorithm for measuring binding-pocket volumes. Journal of Molecular Graphics and Modelling, 2011, 29, 773-776.	2.4	186
36	A molecular mechanics/grid method for evaluation of ligand-receptor interactions. Journal of Computational Chemistry, 1995, 16, 454-464.	3.3	175

#	Article	IF	CITATIONS
37	The relaxed complex method: Accommodating receptor flexibility for drug design with an improved scoring scheme. Biopolymers, 2003, 68, 47-62.	2.4	175
38	Free energy difference calculations by thermodynamic integration: Difficulties in obtaining a precise value. Journal of Computational Chemistry, 1991, 12, 271-275.	3.3	170
39	Molecular Recognition and Ligand Association. Annual Review of Physical Chemistry, 2013, 64, 151-175.	10.8	165
40	Acetylcholinesterase: electrostatic steering increases the rate of ligand binding. Biochemistry, 1993, 32, 401-403.	2.5	150
41	Gated binding of ligands to proteins. Nature, 1981, 293, 316-317.	27.8	148
42	Computing ionization states of proteins with a detailed charge model. Journal of Computational Chemistry, 1996, 17, 1633-1644.	3.3	139
43	STRUCTURE-BASED DRUG DESIGN:Computational Advances. Annual Review of Pharmacology and Toxicology, 1997, 37, 71-90.	9.4	139
44	Unconstrained enhanced sampling for free energy calculations of biomolecules: a review. Molecular Simulation, 2016, 42, 1046-1055.	2.0	139
45	Antiinfectives targeting enzymes and the proton motive force. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7073-82.	7.1	138
46	Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21216-21222.	7.1	137
47	Accelerated molecular dynamics simulations of protein folding. Journal of Computational Chemistry, 2015, 36, 1536-1549.	3.3	134
48	A gating mechanism proposed from a simulation of a human Â7 nicotinic acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6813-6818.	7.1	133
49	CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7260-7265.	7.1	133
50	Graded activation and free energy landscapes of a muscarinic G-protein–coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12162-12167.	7.1	132
51	Exploring Global Motions and Correlations in the Ribosome. Biophysical Journal, 2005, 89, 1455-1463.	0.5	131
52	Annealing Accounts for the Length of Actin Filaments Formed by Spontaneous Polymerization. Biophysical Journal, 1999, 77, 2911-2919.	0.5	129
53	Order N algorithm for computation of electrostatic interactions in biomolecular systems. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19314-19319.	7.1	129
54	Exploring the role of receptor flexibility in structure-based drug discovery. Biophysical Chemistry, 2014, 186, 31-45.	2.8	129

#	Article	IF	CITATIONS
55	Discovery of drug-like inhibitors of an essential RNA-editing ligase in <i>Trypanosoma brucei</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17278-17283.	7.1	128
56	Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor. Quarterly Reviews of Biophysics, 2015, 48, 479-487.	5.7	127
57	Dielectric boundary smoothing in finite difference solutions of the poisson equation: An approach to improve accuracy and convergence. Journal of Computational Chemistry, 1991, 12, 909-912.	3.3	123
58	A coarse grained model for the dynamics of flap opening in HIV-1 protease. Chemical Physics Letters, 2005, 413, 123-128.	2.6	123
59	Diffusive langevin dynamics of model alkanes. Chemical Physics Letters, 1979, 65, 4-11.	2.6	119
60	Agonist-mediated Conformational Changes in Acetylcholine-binding Protein Revealed by Simulation and Intrinsic Tryptophan Fluorescence. Journal of Biological Chemistry, 2005, 280, 8443-8451.	3.4	119
61	Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: Finite element solutions. Journal of Computational Physics, 2010, 229, 6979-6994.	3.8	119
62	Gaussian Accelerated Molecular Dynamics in NAMD. Journal of Chemical Theory and Computation, 2017, 13, 9-19.	5.3	117
63	Targeted Molecular Dynamics Study of C-Loop Closure and Channel Gating in Nicotinic Receptors. PLoS Computational Biology, 2006, 2, e134.	3.2	113
64	Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3036-3041.	7.1	111
65	Gaussian Accelerated Molecular Dynamics: Theory, Implementation, and Applications. Annual Reports in Computational Chemistry, 2017, 13, 231-278.	1.7	107
66	Mapping the Druggable Allosteric Space of Gâ€Protein Coupled Receptors: a Fragmentâ€Based Molecular Dynamics Approach. Chemical Biology and Drug Design, 2010, 76, 201-217.	3.2	106
67	Toward a Unified Representation of Protein Structural Dynamics in Solution. Journal of the American Chemical Society, 2009, 131, 16968-16975.	13.7	105
68	Channel Opening Motion of α7 Nicotinic Acetylcholine Receptor as Suggested by Normal Mode Analysis. Journal of Molecular Biology, 2006, 355, 310-324.	4.2	104
69	Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9. Journal of the American Chemical Society, 2017, 139, 16028-16031.	13.7	104
70	Method for Including the Dynamic Fluctuations of a Protein in Computer-Aided Drug Design. Journal of Physical Chemistry A, 1999, 103, 10213-10219.	2.5	103
71	Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations. ACS Central Science, 2016, 2, 756-763.	11.3	103
72	Accessing a Hidden Conformation of the Maltose Binding Protein Using Accelerated Molecular Dynamics. PLoS Computational Biology, 2011, 7, e1002034.	3.2	102

#	Article	IF	CITATIONS
73	Studying Enzyme Binding Specificity in Acetylcholinesterase Using a Combined Molecular Dynamics and Multiple Docking Approach. Journal of the American Chemical Society, 2002, 124, 8260-8267.	13.7	101
74	Accounting for Receptor Flexibility and Enhanced Sampling Methods in Computerâ€Aided Drug Design. Chemical Biology and Drug Design, 2013, 81, 41-49.	3.2	100
75	Fast Peptidyl cisâ^'trans Isomerization within the Flexible Gly-Rich Flaps of HIV-1 Protease. Journal of the American Chemical Society, 2005, 127, 13778-13779.	13.7	99
76	Deciphering Off-Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics. ACS Central Science, 2019, 5, 651-662.	11.3	99
77	Solving the finite-difference non-linear Poisson-Boltzmann equation. Journal of Computational Chemistry, 1992, 13, 1114-1118.	3.3	98
78	Novel Druggable Hot Spots in Avian Influenza Neuraminidase H5N1 Revealed by Computational Solvent Mapping of a Reduced and Representative Receptor Ensemble. Chemical Biology and Drug Design, 2008, 71, 106-116.	3.2	97
79	Molecular dynamics simulation with a continuum electrostatic model of the solvent. Journal of Computational Chemistry, 1995, 16, 1081-1095.	3.3	96
80	The Influence of Macromolecular Crowding on HIV-1 Protease Internal Dynamics. Journal of the American Chemical Society, 2006, 128, 6006-6007.	13.7	96
81	Internal mobility of ferrocytochrome c. Nature, 1980, 287, 659-660.	27.8	95
82	Computation of electrostatic forces between solvated molecules determined by the Poisson–Boltzmann equation using a boundary element method. Journal of Chemical Physics, 2005, 122, 214102.	3.0	95
83	Active Site Binding Modes of HIV-1 Integrase Inhibitors. Journal of Medicinal Chemistry, 2000, 43, 4109-4117.	6.4	94
84	Population Based Reweighting of Scaled Molecular Dynamics. Journal of Physical Chemistry B, 2013, 117, 12759-12768.	2.6	94
85	Feature-preserving adaptive mesh generation for molecular shape modeling and simulation. Journal of Molecular Graphics and Modelling, 2008, 26, 1370-1380.	2.4	92
86	Predictive Power of Molecular Dynamics Receptor Structures in Virtual Screening. Journal of Chemical Information and Modeling, 2011, 51, 1439-1446.	5.4	91
87	Potentials of Mean Force for Acetylcholine Unbinding from the Alpha7 Nicotinic Acetylcholine Receptor Ligand-Binding Domain. Journal of the American Chemical Society, 2006, 128, 3019-3026.	13.7	90
88	Phosphorylation Effects on cis/trans Isomerization and the Backbone Conformation of Serineâ^'Proline Motifs:Â Accelerated Molecular Dynamics Analysis. Journal of the American Chemical Society, 2005, 127, 1969-1974.	13.7	89
89	Improving the Efficiency of Free Energy Calculations in the Amber Molecular Dynamics Package. Journal of Chemical Theory and Computation, 2013, 9, 4131-4139.	5.3	89
90	Induced Fit or Conformational Selection? The Role of the Semi-closed State in the Maltose Binding Protein. Biochemistry, 2011, 50, 10530-10539.	2.5	88

#	Article	IF	CITATIONS
91	Simulation methods for protein structure fluctuations. Biopolymers, 1980, 19, 1001-1016.	2.4	86
92	Solvent fluctuations in hydrophobic cavity–ligand binding kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1197-1202.	7.1	86
93	Browndye: A software package for Brownian dynamics. Computer Physics Communications, 2010, 181, 1896-1905.	7.5	85
94	Membranes serve as allosteric activators of phospholipase A ₂ , enabling it to extract, bind, and hydrolyze phospholipid substrates. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E516-25.	7.1	85
95	Electrostatic Free Energy and Its Variations in Implicit Solvent Models. Journal of Physical Chemistry B, 2008, 112, 3058-3069.	2.6	84
96	Enhanced Conformational Space Sampling Improves the Prediction of Chemical Shifts in Proteins. Journal of the American Chemical Society, 2010, 132, 1220-1221.	13.7	84
97	Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5675-84.	7.1	82
98	Finite Element Solution of the Steady-State Smoluchowski Equation for Rate Constant Calculations. Biophysical Journal, 2004, 86, 2017-2029.	0.5	81
99	Application of the level-set method to the implicit solvation of nonpolar molecules. Journal of Chemical Physics, 2007, 127, 084503.	3.0	81
100	Gated Binding of Ligands to HIV-1 Protease: Brownian Dynamics Simulations in a Coarse-Grained Model. Biophysical Journal, 2006, 90, 3880-3885.	0.5	80
101	Modelling cardiac calcium sparks in a threeâ€dimensional reconstruction of a calcium release unit. Journal of Physiology, 2012, 590, 4403-4422.	2.9	80
102	G-protein coupled receptors: advances in simulation and drug discovery. Current Opinion in Structural Biology, 2016, 41, 83-89.	5.7	80
103	Allosteric Effects of Sodium Ion Binding on Activation of the M3 Muscarinic G-Protein-Coupled Receptor. Biophysical Journal, 2015, 108, 1796-1806.	0.5	79
104	Key role of the REC lobe during CRISPR–Cas9 activation by â€~sensing', â€~regulating', and â€~lockingâ€ catalytic HNH domain. Quarterly Reviews of Biophysics, 2018, 51, .	€™the 5.7	79
105	Molecular Dynamics Studies on the HIV-1 Integrase Catalytic Domain. Biophysical Journal, 1999, 76, 2999-3011.	0.5	78
106	Optimized Radii for Poissonâ^'Boltzmann Calculations with the AMBER Force Field. Journal of Chemical Theory and Computation, 2005, 1, 484-493.	5.3	78
107	Electrodiffusion: A continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. Journal of Chemical Physics, 2007, 127, 135102.	3.0	77
108	Asymmetric Structural Motions of the Homomeric α7 Nicotinic Receptor Ligand Binding Domain Revealed by Molecular Dynamics Simulation. Biophysical Journal, 2003, 85, 3007-3018.	0.5	76

#	Article	IF	CITATIONS
109	Relating kinetic rates and local energetic roughness by accelerated molecular-dynamics simulations. Journal of Chemical Physics, 2005, 122, 241103.	3.0	76
110	Distinct Glycan Topology for Avian and Human Sialopentasaccharide Receptor Analogues upon Binding Different Hemagglutinins: A Molecular Dynamics Perspective. Journal of Molecular Biology, 2009, 387, 465-491.	4.2	75
111	Absolute Configuration of Bromochlorofluoromethane from Molecular Dynamics Simulation of Its Enantioselective Complexation by Cryptophane-C. Journal of the American Chemical Society, 1997, 119, 3818-3823.	13.7	74
112	HIV-1 Protease Substrate Binding and Product Release Pathways Explored with Coarse-Grained Molecular Dynamics. Biophysical Journal, 2007, 92, 4179-4187.	0.5	74
113	Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics. Physical Chemistry Chemical Physics, 2014, 16, 6398.	2.8	74
114	Generalized Langevin dynamics simulations with arbitrary timeâ€dependent memory kernels. Journal of Chemical Physics, 1983, 78, 3256-3261.	3.0	71
115	Simulation of enzyme–substrate encounter with gated active sites. Nature Structural and Molecular Biology, 1994, 1, 65-69.	8.2	71
116	Evidence for Electrostatic Channeling in a Fusion Protein of Malate Dehydrogenase and Citrate Synthaseâ€. Biochemistry, 1996, 35, 12652-12658.	2.5	70
117	The structure of Sky1p reveals a novel mechanism for constitutive activity. Nature Structural Biology, 2001, 8, 176-183.	9.7	70
118	Biological Applications of Electrostatic Calculations and Brownian Dynamics Simulations. Reviews in Computational Chemistry, 2007, , 229-267.	1.5	70
119	Nanosecond-Timescale Conformational Dynamics of the Human α7 Nicotinic Acetylcholine Receptor. Biophysical Journal, 2007, 93, 2622-2634.	0.5	70
120	A molecular dynamics study of thermodynamic and structural aspects of the hydration of cavities in proteins. Biopolymers, 1991, 31, 919-931.	2.4	69
121	Internal Dynamics of Green Fluorescent Protein. Journal of Physical Chemistry B, 1999, 103, 3263-3269.	2.6	69
122	Ordered Water and Ligand Mobility in the HIV-1 Integrase-5CITEP Complex:Â A Molecular Dynamics Study. Journal of Medicinal Chemistry, 2001, 44, 3043-3047.	6.4	69
123	Ligand-Induced Conformational Change in the α7 Nicotinic Receptor Ligand Binding Domain. Biophysical Journal, 2005, 88, 2564-2576.	0.5	67
124	Binding Pathways of Ligands to HIV-1 Protease: Coarse-grained and Atomistic Simulations. Chemical Biology and Drug Design, 2007, 69, 5-13.	3.2	67
125	Diffusive reaction rates from Brownian dynamics simulations: Replacing the outer cutoff surface by an analytical treatment. Journal of Chemical Physics, 1992, 97, 5682-5686.	3.0	66
126	Electrostatic Channeling of Substrates between Enzyme Active Sites:  Comparison of Simulation and Experiment. Biochemistry, 1997, 36, 16049-16058.	2.5	64

#	Article	IF	CITATIONS
127	A Dynamic Model of HIV Integrase Inhibition and Drug Resistance. Journal of Molecular Biology, 2010, 397, 600-615.	4.2	63
128	Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package. Journal of Computational Chemistry, 2018, 39, 1354-1358.	3.3	63
129	Target flexibility in molecular recognition. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 221-224.	2.3	60
130	Molecular docking of balanol to dynamics snapshots of protein kinase A. Proteins: Structure, Function and Bioinformatics, 2005, 61, 850-858.	2.6	60
131	Membrane Allostery and Unique Hydrophobic Sites Promote Enzyme Substrate Specificity. Journal of the American Chemical Society, 2018, 140, 3285-3291.	13.7	60
132	Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge. Biopolymers, 1998, 46, 465-474.	2.4	58
133	Identification of SLAC1 anion channel residues required for CO ₂ /bicarbonate sensing and regulation of stomatal movements. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11129-11137.	7.1	58
134	Electrostatic energy calculations by a Finite-difference method: Rapid calculation of charge-solvent interaction energies. Journal of Computational Chemistry, 1992, 13, 768-771.	3.3	57
135	Molecular dynamics of a κB DNA element: base flipping via cross-strand intercalative stacking in a microsecond-scale simulation. Nucleic Acids Research, 2008, 36, 4941-4955.	14.5	56
136	Computer-Aided Identification of <i>Trypanosoma brucei</i> Uridine Diphosphate Galactose 4′-Epimerase Inhibitors: Toward the Development of Novel Therapies for African Sleeping Sickness. Journal of Medicinal Chemistry, 2010, 53, 5025-5032.	6.4	56
137	Role of Secondary Sialic Acid Binding Sites in Influenza N1 Neuraminidase. Journal of the American Chemical Society, 2010, 132, 2883-2885.	13.7	55
138	Finite Element Simulations of Acetylcholine Diffusion in Neuromuscular Junctions. Biophysical Journal, 2003, 84, 2234-2241.	0.5	54
139	How To Deal with Multiple Binding Poses in Alchemical Relative Protein–Ligand Binding Free Energy Calculations. Journal of Chemical Theory and Computation, 2015, 11, 2670-2679.	5.3	54
140	The folding energy landscape and phosphorylation: modeling the conformational switch of the NFAT regulatory domain. FASEB Journal, 2005, 19, 1389-1395.	0.5	53
141	Mechanistic Insight into the Role of Transition-State Stabilization in Cyclophilin A. Journal of the American Chemical Society, 2009, 131, 147-152.	13.7	53
142	Molecular dynamics of ferrocytochrome c. Nature, 1980, 286, 304-305.	27.8	52
143	Computer Simulation and the Design of New Biological Molecules. Israel Journal of Chemistry, 1986, 27, 211-215.	2.3	52
144	Ligand Binding Pathways and Conformational Transitions of the HIV Protease. Biochemistry, 2018, 57, 1533-1541.	2.5	52

#	Article	IF	CITATIONS
145	Free energy from simulations. Current Opinion in Structural Biology, 1991, 1, 196-200.	5.7	51
146	Elucidation of Cryptic and Allosteric Pockets within the SARS-CoV-2 Main Protease. Journal of Chemical Information and Modeling, 2021, 61, 3495-3501.	5.4	51
147	Atomistic Brownian Dynamics Simulation of Peptide Phosphorylation. Journal of the American Chemical Society, 2001, 123, 9107-9111.	13.7	50
148	Conformational sampling with Poisson-Boltzmann forces and a stochastic dynamics/Monte Carlo method: Application to alanine dipeptide. Journal of Computational Chemistry, 1997, 18, 1750-1759.	3.3	49
149	Using Selectively Applied Accelerated Molecular Dynamics to Enhance Free Energy Calculations. Journal of Chemical Theory and Computation, 2010, 6, 3285-3292.	5.3	49
150	Structure, mechanism, and dynamics of UDP-galactopyranose mutase. Archives of Biochemistry and Biophysics, 2014, 544, 128-141.	3.0	49
151	Optimization of Brownian dynamics methods for diffusionâ€influenced rate constant calculations. Journal of Chemical Physics, 1986, 84, 2196-2203.	3.0	48
152	Computational Studies of the Effect of the S23D/S24D Troponin I Mutation on Cardiac Troponin Structural Dynamics. Biophysical Journal, 2014, 107, 1675-1685.	0.5	48
153	Molecular Recognition in the Case of Flexible Targets. Current Pharmaceutical Design, 2011, 17, 1663-1671.	1.9	47
154	The Dynamic Structure of Thrombin in Solution. Biophysical Journal, 2012, 103, 79-88.	0.5	47
155	Intramolecular flexibility in phenylalanine transfer RNA. Nature, 1981, 294, 286-287.	27.8	46
156	High-fidelity geometric modeling for biomedical applications. Finite Elements in Analysis and Design, 2008, 44, 715-723.	3.2	46
157	Dynamics and Calcium Association to the N-Terminal Regulatory Domain of Human Cardiac Troponin C: A Multiscale Computational Study. Journal of Physical Chemistry B, 2012, 116, 8449-8459.	2.6	46
158	A model study of sequential enzyme reactions and electrostatic channeling. Journal of Chemical Physics, 2014, 140, 105101.	3.0	46
159	3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries. PLoS Computational Biology, 2020, 16, e1007756.	3.2	46
160	Saddleâ€point avoidance in diffusional reactions. Journal of Chemical Physics, 1983, 78, 987-989.	3.0	45
161	The hinge-bending mode of a lysozyme-inhibitor complex. Biopolymers, 1986, 25, 1767-1802.	2.4	45
162	Dynamics, Hydration, and Motional Averaging of a Loop-Gated Artificial Protein Cavity:  The W191G Mutant of Cytochrome c Peroxidase in Water as Revealed by Molecular Dynamics Simulations. Biochemistry, 2007, 46, 10629-10642.	2.5	45

#	Article	IF	CITATIONS
163	Variational Implicit Solvation with Poisson–Boltzmann Theory. Journal of Chemical Theory and Computation, 2014, 10, 1454-1467.	5.3	45
164	PKA Phosphorylation of Cardiac Troponin I Modulates Activation andÂRelaxation Kinetics of Ventricular Myofibrils. Biophysical Journal, 2014, 107, 1196-1204.	0.5	45
165	Simulation of the bimolecular reaction between superoxide and superoxide dismutase: synthesis of the encounter and reaction steps. Journal of the American Chemical Society, 1993, 115, 11874-11877.	13.7	44
166	A proposed signaling motif for nuclear import in mRNA processing via the formation of arginine claw. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14947-14951.	7.1	44
167	Coupling the Level-Set Method with Molecular Mechanics for Variational Implicit Solvation of Nonpolar Molecules. Journal of Chemical Theory and Computation, 2009, 5, 257-266.	5.3	44
168	Simulations of Biased Agonists in the β ₂ Adrenergic Receptor with Accelerated Molecular Dynamics. Biochemistry, 2013, 52, 5593-5603.	2.5	44
169	Gating mechanism of elongating Î ² -ketoacyl-ACP synthases. Nature Communications, 2020, 11, 1727.	12.8	44
170	Mapping of Allosteric Druggable Sites in Activationâ€Associated Conformers of the M2 Muscarinic Receptor. Chemical Biology and Drug Design, 2014, 83, 237-246.	3.2	43
171	Effects of HCM cTnI Mutation R145G on Troponin Structure and Modulation by PKA Phosphorylation Elucidated by Molecular Dynamics Simulations. Biophysical Journal, 2015, 108, 395-407.	0.5	43
172	AFMPB: An adaptive fast multipole Poisson–Boltzmann solver for calculating electrostatics in biomolecular systems. Computer Physics Communications, 2010, 181, 1150-1160.	7.5	42
173	Electrostatic steering of substrate to acetylcholinesterase: Analysis of field fluctuations. Biopolymers, 2000, 53, 265-271.	2.4	41
174	Studying the roles of W86, E202, and Y337 in binding of acetylcholine to acetylcholinesterase using a combined molecular dynamics and multiple docking approach. Protein Science, 2003, 12, 2675-2684.	7.6	41
175	Structural and dynamical rationale for fatty acid unsaturation in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6775-6783.	7.1	41
176	Activation of atypical protein kinase C by sphingosine 1-phosphate revealed by an aPKC-specific activity reporter. Science Signaling, 2019, 12, .	3.6	41
177	Memory kernels from molecular dynamics. Journal of Chemical Physics, 1981, 75, 2462-2463.	3.0	40
178	Phosphorylation stabilizes the N-termini of ?-helices. , 1999, 49, 225-233.		40
179	On the Application of Accelerated Molecular Dynamics to Liquid Water Simulations. Journal of Physical Chemistry B, 2006, 110, 22695-22701.	2.6	40
180	Improved Boundary Element Methods for Poissonâ^ Boltzmann Electrostatic Potential and Force Calculations. Journal of Chemical Theory and Computation, 2007, 3, 1134-1142.	5.3	40

#	Article	IF	CITATIONS
181	Interfaces and hydrophobic interactions in receptor-ligand systems: A level-set variational implicit solvent approach. Journal of Chemical Physics, 2009, 131, 144102.	3.0	40
182	Computational Identification of Uncharacterized Cruzain Binding Sites. PLoS Neglected Tropical Diseases, 2010, 4, e676.	3.0	40
183	w-REXAMD: A Hamiltonian Replica Exchange Approach to Improve Free Energy Calculations for Systems with Kinetically Trapped Conformations. Journal of Chemical Theory and Computation, 2013, 9, 18-23.	5.3	40
184	Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units. Journal of Chemical Theory and Computation, 2013, 9, 4684-4691.	5.3	39
185	Development of Potent and Selective Inhibitors for Group VIA Calcium-Independent Phospholipase A ₂ Guided by Molecular Dynamics and Structure–Activity Relationships. Journal of Medicinal Chemistry, 2016, 59, 4403-4414.	6.4	39
186	Orientational steering in enzyme-substrate association: Ionic strength dependence of hydrodynamic torque effects. European Biophysics Journal, 1996, 24, 137-41.	2.2	37
187	Brownian Dynamics Simulations of Biological Molecules. Trends in Chemistry, 2019, 1, 727-738.	8.5	37
188	Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations. Journal of Structural Biology, 2019, 206, 267-279.	2.8	37
189	Darwinian biophysics: Electrostatics and evolution in the kinetics of molecular binding. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7683-7684.	7.1	36
190	Molecular-Dynamics Simulations of ELIC—a Prokaryotic Homologue of the Nicotinic Acetylcholine Receptor. Biophysical Journal, 2009, 96, 4502-4513.	0.5	36
191	The binding mechanism, multiple binding modes, and allosteric regulation of <i>Staphylococcus aureus</i> Sortase A probed by molecular dynamics simulations. Protein Science, 2012, 21, 1858-1871.	7.6	36
192	Troponin I Mutations R146G and R21C Alter Cardiac Troponin Function, Contractile Properties, and Modulation by Protein Kinase A (PKA)-mediated Phosphorylation. Journal of Biological Chemistry, 2015, 290, 27749-27766.	3.4	36
193	Free energy simulations: Correcting for electrostatic cutoffs by use of the Poisson equation. Journal of Chemical Physics, 1996, 104, 7645-7651.	3.0	35
194	pKaShift Effects on Backbone Amide Base-Catalyzed Hydrogen Exchange Rates in Peptides. Journal of the American Chemical Society, 1998, 120, 3735-3738.	13.7	35
195	"New-version-fast-multipole-method―accelerated electrostatic calculations in biomolecular systems. Journal of Computational Physics, 2007, 226, 1348-1366.	3.8	35
196	Numerical Analysis of Ca2+ Signaling in Rat Ventricular Myocytes with Realistic Transverse-Axial Tubular Geometry and Inhibited Sarcoplasmic Reticulum. PLoS Computational Biology, 2010, 6, e1000972.	3.2	35
197	Molecular Dynamics of Phenylalanine Transfer RNA. Journal of Biomolecular Structure and Dynamics, 1983, 1, 357-369.	3.5	34
198	Polarization around an ion in a dielectric continuum with truncated electrostatic interactions. Journal of Chemical Physics, 1999, 110, 10679-10692.	3.0	34

#	Article	IF	CITATIONS
199	Continuum Simulations of Acetylcholine Consumption by Acetylcholinesterase:  A Poissonâ^'Nernstâ 'Planck Approach. Journal of Physical Chemistry B, 2008, 112, 270-275.	2.6	34
200	Taxodione and arenarone inhibit farnesyl diphosphate synthase by binding to the isopentenyl diphosphate site. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2530-9.	7.1	34
201	Large-amplitude bending motions in phenylalanine transfer RNA. Biopolymers, 1984, 23, 2173-2193.	2.4	33
202	Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation. Journal of Chemical Theory and Computation, 2012, 8, 386-397.	5.3	33
203	Insertion of the Ca2+-Independent Phospholipase A2 into a Phospholipid Bilayer via Coarse-Grained and Atomistic Molecular Dynamics Simulations. PLoS Computational Biology, 2013, 9, e1003156.	3.2	33
204	A Model for Enzymeâ ``Substrate Interaction in Alanine Racemase. Journal of the American Chemical Society, 2001, 123, 2830-2834.	13.7	32
205	Partial electrostatic charges for the active center of Cu, Zn superoxide dismutase. Journal of Computational Chemistry, 1990, 11, 346-350.	3.3	31
206	Acetylcholinesterase: Role of the enzyme's charge distribution in steering charged ligands toward the active site. Biopolymers, 1996, 39, 85-94.	2.4	31
207	Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria. PLoS Computational Biology, 2015, 11, e1004341.	3.2	31
208	Interfacial plasticity facilitates high reaction rate of <i>E. coli</i> FAS malonyl-CoA:ACP transacylase, FabD. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24224-24233.	7.1	31
209	Molecular dynamics of ferrocytochrome c: Time dependence of the atomic displacements. Biopolymers, 1983, 22, 1579-1593.	2.4	30
210	Including receptor flexibility and induced fit effects into the design of MMPâ€2 inhibitors. Journal of Molecular Recognition, 2010, 23, 173-182.	2.1	29
211	Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation. Journal of Chemical Theory and Computation, 2018, 14, 1853-1864.	5.3	29
212	Brownian dynamic study of an enzyme metabolon in the TCA cycle: Substrate kinetics and channeling. Protein Science, 2018, 27, 463-471.	7.6	29
213	Superoxide dismutase: Fluctuations in the structure and solvation of the active site channel studied by molecular dynamics simulation. Biopolymers, 1989, 28, 2085-2096.	2.4	28
214	Mouse acetylcholinesterase unliganded and in complex with huperzine A: A comparison of molecular dynamics simulations. , 1999, 50, 35-43.		28
215	Statistical analysis of the fractal gating motions of the enzyme acetylcholinesterase. Physical Review E, 2001, 63, 041902.	2.1	28
216	Dynamics of the Acetylcholinesterase Tetramer. Biophysical Journal, 2008, 94, 1144-1154.	0.5	28

#	Article	IF	CITATIONS
217	Modeling Effects of L-Type Ca2+ Current and Na+-Ca2+ Exchanger on Ca2+ Trigger Flux in Rabbit Myocytes with Realistic T-Tubule Geometries. Frontiers in Physiology, 2012, 3, 351.	2.8	28
218	Calcium binding and allosteric signaling mechanisms for the sarcoplasmic reticulum Ca ²⁺ ATPase. Protein Science, 2012, 21, 1429-1443.	7.6	28
219	Acetylcholinesterase: Role of the enzyme's charge distribution in steering charged ligands toward the active site. Biopolymers, 1996, 39, 85-94.	2.4	28
220	Evaluation of Hydration Free Energy by Level-Set Variational Implicit-Solvent Model with Coulomb-Field Approximation. Journal of Chemical Theory and Computation, 2013, 9, 1778-1787.	5.3	27
221	Allosteric Inhibition of Epac. Journal of Biological Chemistry, 2014, 289, 29148-29157.	3.4	27
222	Chromophore Protonation States and the Proton Shuttle Mechanism in Green Fluorescent Protein:Â Inferences Drawn from ab Initio Theoretical Studies of Chemical Structures and Vibrational Spectraâ€. Journal of Physical Chemistry B, 2001, 105, 2850-2857.	2.6	26
223	Studying the affinity and kinetics of molecular association with molecular-dynamics simulation. Journal of Chemical Physics, 2003, 118, 1821-1827.	3.0	26
224	Three-dimensional geometric modeling of membrane-bound organelles in ventricular myocytes: Bridging the gap between microscopic imaging and mathematical simulation. Journal of Structural Biology, 2008, 164, 304-313.	2.8	26
225	Structural insight into the separate roles of inositol tetraphosphate and deacetylaseâ€activating domain in activation of histone deacetylase 3. Protein Science, 2013, 22, 83-92.	7.6	26
226	Molecular dynamic study of MlaC protein in Gramâ€negative bacteria: conformational flexibility, solvent effect and proteinâ€phospholipid binding. Protein Science, 2016, 25, 1430-1437.	7.6	26
227	Molecular dynamics of mouse acetylcholinesterase complexed with huperzine A. , 1999, 50, 347-359.		25
228	Peptide insertion, positioning, and stabilization in a membrane: Insight from an all-atom molecular dynamics simulation. Biopolymers, 2007, 85, 490-497.	2.4	25
229	Molecular-dynamics simulation of phenylalanine transfer RNA. I. Methods and general results. Biopolymers, 1985, 24, 1169-1188.	2.4	24
230	Anti-insulin antibody structure and conformation. II. Molecular dynamics with explicit solvent. Biopolymers, 1992, 32, 23-32.	2.4	24
231	Dynamic and Rotational Analysis of Cryptophane Hostâ^'Guest Systems:Â Challenges of Describing Molecular Recognition. Journal of the American Chemical Society, 1999, 121, 381-390.	13.7	24
232	Optimization and Computational Evaluation of a Series of Potential Active Site Inhibitors of the V82F/I84V Drug-resistant Mutant of HIV-1 Protease: an Application of the Relaxed Complex Method of Structure-based Drug Design. Chemical Biology and Drug Design, 2006, 67, 336-345.	3.2	24
233	An Open-Source Mesh Generation Platform for Biophysical Modeling Using Realistic Cellular Geometries. Biophysical Journal, 2020, 118, 1003-1008.	0.5	24
234	Correcting for electrostatic cutoffs in free energy simulations: Toward consistency between simulations with different cutoffs. Journal of Chemical Physics, 1998, 108, 9617-9623.	3.0	23

#	Article	IF	CITATIONS
235	Novel inhibitors of Mycobacterium tuberculosis dTDP-6-deoxy-l-lyxo-4-hexulose reductase (RmlD) identified by virtual screening. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7064-7067.	2.2	23
236	Electrostatic Channeling in P.Âfalciparum DHFR-TS: Brownian Dynamics and Smoluchowski Modeling. Biophysical Journal, 2014, 107, 2394-2402.	0.5	23
237	A Molecular Dynamics Ensemble-Based Approach for the Mapping of Druggable Binding Sites. Methods in Molecular Biology, 2012, 819, 3-12.	0.9	23
238	Enzymatic Activity versus Structural Dynamics: The Case of Acetylcholinesterase Tetramer. Biophysical Journal, 2009, 97, 897-905.	0.5	22
239	Potential drug-like inhibitors of Group 1 influenza neuraminidase identified through computer-aided drug design. Computational Biology and Chemistry, 2010, 34, 97-105.	2.3	22
240	Gated Diffusion-controlled Reactions. BMC Biophysics, 2011, 4, 4.	4.4	22
241	Heterogeneous Hydration of p53/MDM2 Complex. Journal of Chemical Theory and Computation, 2014, 10, 1302-1313.	5.3	22
242	Computation of p <scp>H</scp> â€dependent binding free energies. Biopolymers, 2016, 105, 43-49.	2.4	22
243	A Computational Modeling Approach Predicts Interaction of the Antifungal Protein AFP from <i>Aspergillus giganteus</i> with Fungal Membranes via Its γ-Core Motif. MSphere, 2018, 3, .	2.9	22
244	Acetylcholinesterase: Effects of Ionic Strength and Dimerization on the Rate Constants. Israel Journal of Chemistry, 1994, 34, 151-158.	2.3	21
245	ISIM: A Program for Grand Canonical Monte Carlo Simulations of the Ionic Environment of Biomolecules. Molecular Simulation, 2004, 30, 45-61.	2.0	21
246	Use of Broken-Symmetry Density Functional Theory To Characterize the IspH Oxidized State: Implications for IspH Mechanism and Inhibition. Journal of Chemical Theory and Computation, 2014, 10, 3871-3884.	5.3	21
247	Substrate channeling between the human dihydrofolate reductase and thymidylate synthase. Protein Science, 2016, 25, 79-86.	7.6	21
248	Computer-aided drug design guided by hydrogen/deuterium exchange mass spectrometry: A powerful combination for the development of potent and selective inhibitors of Group VIA calcium-independent phospholipase A2. Bioorganic and Medicinal Chemistry, 2016, 24, 4801-4811.	3.0	21
249	Kinetic effects of multiple charge modifications in enzyme-substrate reactions: Brownian dynamics simulations of Cu, Zn superoxide dismutase. Journal of Computational Chemistry, 1992, 13, 66-69.	3.3	20
250	Multi-core CPU or GPU-accelerated Multiscale Modeling for Biomolecular Complexes. Computational and Mathematical Biophysics, 2013, 1, 164-179.	1.1	20
251	<scp>NMR</scp> structureâ€based optimization of <i>Staphylococcus aureus</i> sortase A pyridazinone inhibitors. Chemical Biology and Drug Design, 2017, 90, 327-344.	3.2	20
252	Mechanisms for Benzene Dissociation through the Excited State of T4 Lysozyme L99A Mutant. Biophysical Journal, 2019, 116, 205-214.	0.5	20

#	Article	IF	CITATIONS
253	Electric-field distribution inside the bacterial photosynthetic reaction center of Rhodopseudomonas viridis. Chemical Physics Letters, 1990, 173, 246-252.	2.6	19
254	Correlation between rate of enzyme-substrate diffusional encounter and average Boltzmann factor around active site. , 1998, 45, 355-360.		19
255	The myosin II coiled-coil domain atomic structure in its native environment. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
256	Efficient trajectory simulation methods for diffusional barrier crossing processes. Journal of Chemical Physics, 1980, 72, 4569-4578.	3.0	18
257	Quantum simulation of ferrocytochrome c. Nature, 1988, 334, 726-728.	27.8	18
258	LS-VISM: A software package for analysis of biomolecular solvation. Journal of Computational Chemistry, 2015, 36, 1047-1059.	3.3	18
259	Computer simulation study of the binding of an antiviral agent to a sensitive and a resistant human rhinovirus. Journal of Computer-Aided Molecular Design, 1989, 2, 259-266.	2.9	17
260	Solvation studies of DMP323 and A76928 bound to HIV protease: Analysis of water sites using grand canonical Monte Carlo simulations. Protein Science, 1998, 7, 573-579.	7.6	17
261	Brownian and Essential Dynamics Studies of the HIV-1 Integrase Catalytic Domain. Journal of Biomolecular Structure and Dynamics, 1998, 16, 733-745.	3.5	17
262	Rapid Estimation of Solvation Energy for Simulations of Proteinâ^'Protein Association. Journal of Chemical Theory and Computation, 2005, 1, 143-152.	5.3	17
263	Kinase conformations: A computational study of the effect of ligand binding. Protein Science, 1997, 6, 2336-2343.	7.6	17
264	Lipoprotein-associated phospholipase A ₂ : A paradigm for allosteric regulation by membranes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
265	Molecular Dynamics Simulation of Substrate-Enzyme Interactions in the Active Site Channel of Superoxide Dismutase. Molecular Simulation, 1993, 10, 277-289.	2.0	16
266	Proton transfer dynamics of GART: The pH-dependent catalytic mechanism examined by electrostatic calculations. Protein Science, 2008, 10, 2379-2392.	7.6	16
267	Manipulating Protein–Protein Interactions in Nonribosomal Peptide Synthetase Type II Peptidyl Carrier Proteins. Biochemistry, 2017, 56, 5269-5273.	2.5	16
268	Acetylcholinesterase: role of the enzyme's charge distribution in steering charged ligands toward the active site. Biopolymers, 1996, 39, 85-94.	2.4	16
269	Molecular surface-free continuum model for electrodiffusion processes. Chemical Physics Letters, 2008, 451, 282-286.	2.6	15
270	Native-state conformational dynamics of GART: A regulatory pH-dependent coil-helix transition examined by electrostatic calculations. Protein Science, 2008, 10, 2363-2378.	7.6	15

#	Article	IF	CITATIONS
271	Phase-field approach to implicit solvation of biomolecules with Coulomb-field approximation. Journal of Chemical Physics, 2013, 139, 024111.	3.0	15
272	Electrostatic steering enhances the rate of cAMP binding to phosphodiesterase: Brownian dynamics modeling. Protein Science, 2015, 24, 1884-1889.	7.6	15
273	Enhanced Ligand Sampling for Relative Protein–Ligand Binding Free Energy Calculations. Journal of Physical Chemistry B, 2015, 119, 6190-6197.	2.6	15
274	Gaussian-Accelerated Molecular Dynamics with the Weighted Ensemble Method: A Hybrid Method Improves Thermodynamic and Kinetic Sampling. Journal of Chemical Theory and Computation, 2021, 17, 7938-7951.	5.3	15
275	Changes in flexibility upon binding: Application of the self-consistent pair contact probability method to protein-protein interactions. Journal of Chemical Physics, 2002, 117, 9927-9933.	3.0	14
276	Modifying the Thioester Linkage Affects the Structure of the Acyl Carrier Protein. Angewandte Chemie - International Edition, 2019, 58, 10888-10892.	13.8	14
277	<scp>pH</scp> â€dependent conformational dynamics of betaâ€secretase 1: <scp>A</scp> molecular dynamics study. Journal of Molecular Recognition, 2019, 32, e2765.	2.1	14
278	Decoding allosteric regulation by the acyl carrier protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
279	Study of global motions in proteins by weighted masses molecular dynamics: Adenylate kinase as a test case. Proteins: Structure, Function and Bioinformatics, 1996, 25, 79-88.	2.6	13
280	Conformational Dynamics of the Flexible Catalytic Loop in <i>Mycobacterium tuberculosis</i> 1â€Deoxyâ€ <scp>d</scp> â€xylulose 5â€Phosphate Reductoisomerase. Chemical Biology and Drug Design, 2009, 73, 26-38.	, 3.2	13
281	<scp>A</scp> ctivation mechanisms of the first sphingosineâ€lâ€phosphate receptor. Protein Science, 2017, 26, 1150-1160.	7.6	13
282	Multiscale Simulations Examining Glycan Shield Effects on Drug Binding to Influenza Neuraminidase. Biophysical Journal, 2020, 119, 2275-2289.	0.5	13
283	Dynamical properties of fasciculin-2. , 1999, 36, 447-453.		12
284	Variational Implicit-Solvent Modeling of Host–Guest Binding: A Case Study on Cucurbit[7]uril . Journal of Chemical Theory and Computation, 2013, 9, 4195-4204.	5.3	12
285	Mathematical and Numerical Aspects of the Adaptive Fast Multipole Poisson-Boltzmann Solver. Communications in Computational Physics, 2013, 13, 107-128.	1.7	12
286	Accelerated Adaptive Integration Method. Journal of Physical Chemistry B, 2014, 118, 5109-5118.	2.6	12
287	Variational implicit-solvent predictions of the dry–wet transition pathways for ligand–receptor binding and unbinding kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14989-14994.	7.1	12
288	Mechanistic Probes for the Epimerization Domain of Nonribosomal Peptide Synthetases. ChemBioChem, 2019, 20, 147-152.	2.6	12

17

#	Article	IF	CITATIONS
289	Anti-insulin antibody structure and conformation. I. Molecular modeling and mechanics of an insulin antibody. Biopolymers, 1992, 32, 11-21.	2.4	11
290	Substrateâ€dependent dynamics of UDPâ€galactopyranose mutase: Implications for drug design. Protein Science, 2013, 22, 1490-1501.	7.6	11
291	Poisson–Boltzmann versus Size-Modified Poisson–Boltzmann Electrostatics Applied to Lipid Bilayers. Journal of Physical Chemistry B, 2014, 118, 14827-14832.	2.6	11
292	Drug screening strategy for human membrane proteins: From NMR protein backbone structure to in silica- and NMR-screened hits. Biochemical and Biophysical Research Communications, 2014, 445, 724-733.	2.1	11
293	Investigation of the conformational dynamics of the apo A _{2A} adenosine receptor. Protein Science, 2015, 24, 1004-1012.	7.6	11
294	A Stochastic Multiscale Model of Cardiac Thin Filament Activation Using Brownian-Langevin Dynamics. Biophysical Journal, 2019, 117, 2255-2272.	0.5	11
295	Molecular-dynamics simulation of phenylalanine transfer RNA. II. Amplitudes, anisotropies, and anharmonicities of atomic motions. Biopolymers, 1985, 24, 1189-1204.	2.4	10
296	Fluctuation of the solvent-accessible surface area of tuna ferrocytochrome c. Biopolymers, 1990, 29, 1877-1883.	2.4	10
297	Simulation of electrostatic and hydrodynamic properties ofSerratia endonuclease. , 1997, 41, 443-450.		10
298	Poisson-Boltzmann model studies of molecular electrostatic properties of the cAMP-dependent protein kinase. European Biophysics Journal, 1999, 28, 457-467.	2.2	10
299	Electrostatic Interactions. Methods of Biochemical Analysis, 2005, , 427-440.	0.2	10
300	Dipeptide Aggregation in Aqueous Solution from Fixed Point-Charge Force Fields. Journal of Chemical Theory and Computation, 2014, 10, 1631-1637.	5.3	10
301	Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations. Journal of Chemical Physics, 2016, 145, 054114.	3.0	10
302	Spectroscopic and Computational Investigations of Ligand Binding to IspH: Discovery of Nonâ€diphosphate Inhibitors. ChemBioChem, 2017, 18, 914-920.	2.6	10
303	"Martinizing―the Variational Implicit Solvent Method (VISM): Solvation Free Energy for Coarse-Grained Proteins. Journal of Physical Chemistry B, 2017, 121, 6538-6548.	2.6	10
304	The invisible dance of CRISPR-Cas9. Physics Today, 2019, 72, 30-36.	0.3	10
305	Molecular Dynamics Simulation Study of Conformational Changes of Transcription Factor TFIIS during RNA Polymerase II Transcriptional Arrest and Reactivation. PLoS ONE, 2014, 9, e97975.	2.5	10
306	Hydration of superoxide studied by molecular dynamics simulation. Journal of Computational Chemistry, 1990, 11, 1003-1008.	3.3	9

#	Article	IF	CITATIONS
307	Simulation of Bimolecular Reactions. Molecular Simulation, 1993, 10, 61-65.	2.0	9
308	Molecular dynamics of cryptophane and its complexes with tetramethylammonium and neopentane using a continuum solvent model. Journal of Computational Chemistry, 1999, 20, 956-970.	3.3	9
309	E9-Im9 Colicin DNaseâ~'Immunity Protein Biomolecular Association in Water: A Multiple-Copy and Accelerated Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2008, 112, 16802-16814.	2.6	9
310	A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson–Boltzmann electrostatics. Journal of Chemical Physics, 2015, 143, 243110.	3.0	8
311	General trends of dihedral conformational transitions in a globular protein. Proteins: Structure, Function and Bioinformatics, 2016, 84, 501-514.	2.6	8
312	Dynamic Structure and Inhibition of a Malaria Drug Target: Geranylgeranyl Diphosphate Synthase. Biochemistry, 2016, 55, 5180-5190.	2.5	8
313	Effect of donor atom identity on metal-binding pharmacophore coordination. Journal of Biological Inorganic Chemistry, 2017, 22, 605-613.	2.6	8
314	Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs. PLoS Computational Biology, 2013, 9, e1003395.	3.2	7
315	Inactivating mutation in histone deacetylase 3 stabilizes its active conformation. Protein Science, 2013, 22, 1306-1312.	7.6	7
316	Heterogeneous Solvation in Distinctive Protein–Protein Interfaces Revealed by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2018, 122, 11695-11701.	2.6	7
317	Shifting the Hydrolysis Equilibrium of Substrate Loaded Acyl Carrier Proteins. Biochemistry, 2019, 58, 3557-3560.	2.5	7
318	Parallelization of Poisson—Boltzmann and Brownian Dynamics Calculations. ACS Symposium Series, 1995, , 170-185.	0.5	6
319	Tailoring the Variational Implicit Solvent Method for New Challenges: Biomolecular Recognition and Assembly. Frontiers in Molecular Biosciences, 2018, 5, 13.	3.5	6
320	Coupling Monte Carlo, Variational Implicit Solvation, and Binary Level-Set for Simulations of Biomolecular Binding. Journal of Chemical Theory and Computation, 2021, 17, 2465-2478.	5.3	6
321	Characterizing protein kinase A (PKA) subunits as macromolecular regulators of PKA RI <i>α</i> liquid–liquid phase separation. Journal of Chemical Physics, 2021, 154, 221101.	3.0	6
322	The Implementation of the Colored Abstract Simplicial Complex and Its Application to Mesh Generation. ACM Transactions on Mathematical Software, 2019, 45, 1-20.	2.9	6
323	Entropy Loss of Hydroxyl Groups of Balanol upon Binding to Protein Kinase A. Journal of Chemical Education, 2002, 79, 1122.	2.3	5
324	AFMPB: An adaptive fast multipole Poisson–Boltzmann solver for calculating electrostatics in biomolecular systems. Computer Physics Communications, 2013, 184, 2618-2619.	7.5	5

#	Article	IF	CITATIONS
325	Remarkable similarity in Plasmodium falciparum and Plasmodium vivax geranylgeranyl diphosphate synthase dynamics and its implication for antimalarial drug design. Chemical Biology and Drug Design, 2018, 91, 1068-1077.	3.2	5
326	Docking simulation and antibiotic discovery targeting the MlaC protein in Gramâ€negative bacteria. Chemical Biology and Drug Design, 2019, 93, 647-652.	3.2	5
327	Predicting the effects of dATP on cardiac contraction using multiscale modeling of the sarcomere. Archives of Biochemistry and Biophysics, 2020, 695, 108582.	3.0	5
328	Transport Properties of Macromolecules by Brownian Dynamics Simulation: Vectorization of Brownian Dynamics on the Cyber-205. Journal of Computational Chemistry, 1986, 7, 457-463.	3.3	4
329	Accelerated molecular dynamics: Theory, implementation and applications. , 2012, , .		4
330	Dynamics of Macromolecular Interactions. ACS Symposium Series, 1986, , 216-231.	0.5	3
331	Exciting Green Flourescent Protein. ACS Symposium Series, 1998, , 288-295.	0.5	3
332	Conservative and nonconservative mutations in proteins: Anomalous mutations in a transport receptor analyzed by free energy and quantum chemical calculations. Protein Science, 1995, 4, 387-393.	7.6	3
333	Computer-Aided Drug Discovery: Physics-based Simulations from the Molecular to the Cellular Level. , 2008, , 401-410.		3
334	Trypsinogen activation as observed in accelerated molecular dynamics simulations. Protein Science, 2014, 23, 1550-1558.	7.6	3
335	Modifying the Thioester Linkage Affects the Structure of the Acyl Carrier Protein. Angewandte Chemie, 2019, 131, 11004-11008.	2.0	3
336	Investigating Intrinsically Disordered Proteins With Brownian Dynamics. Frontiers in Molecular Biosciences, 0, 9, .	3.5	3
337	Intrinsic conformational flexibility of acetylcholinesterase. Chemico-Biological Interactions, 2008, 175, 303-304.	4.0	2
338	Autobiography of J. Andrew McCammon. Journal of Physical Chemistry B, 2016, 120, 8057-8060.	2.6	2
339	Computational Predictions of Drug-Protein Binding Kinetics with a Hybrid Molecular Dynamics, Brownian Dynamics, and Milestoning Approach. Biophysical Journal, 2019, 116, 562a.	0.5	2
340	Computer-aided Drug Discovery: Two Antiviral Drugs for HIV/AIDS. RSC Biomolecular Sciences, 2012, , 316-319.	0.4	1
341	Hybrid finite element and Brownian dynamics method for charged particles. Journal of Chemical Physics, 2016, 144, 164107.	3.0	1
342	Data for molecular dynamics simulations of Escherichia coli cytochrome bd oxidase with the Amber force field. Data in Brief, 2021, 38, 107401.	1.0	1

#	Article	IF	CITATIONS
343	Electrostatic steering of substrate to acetylcholinesterase: Analysis of field fluctuations. Biopolymers, 2000, 53, 265.	2.4	1
344	Inside Back Cover: Multi-Timescale Conformational Dynamics of the SH3 Domain of CD2-Associated Protein using NMR Spectroscopy and Accelerated Molecular Dynamics (Angew. Chem. Int. Ed. 25/2012). Angewandte Chemie - International Edition, 2012, 51, 6279-6279.	13.8	0
345	Hierarchical Orthogonal Matrix Generation and Matrix-Vector Multiplications in Rigid Body Simulations. SIAM Journal of Scientific Computing, 2018, 40, A1345-A1361.	2.8	0
346	The Association of Tetrameric Acetylcholinesterase With ColQ Tail: A Block Normal Mode Analysis. PLoS Computational Biology, 2005, preprint, e62.	3.2	0
347	Computational Studies of Protein Dynamics. FASEB Journal, 2007, 21, A40.	0.5	0
348	One-Bead Coarse-Grained Models for Proteins. , 2008, , 285-298.		0
349	Membrane Allostery and Hydrophobic Binding Sites Control Substrate Specificity of Lipolytic Enzymes. FASEB Journal, 2018, 32, 528.6.	0.5	0
350	Atypical Protein Kinase Câ€specific Activity Reporter Reveals Novel Activation Mechanism of Atypical Protein Kinase C by Sphingosine 1â€phosphate. FASEB Journal, 2018, 32, 662.1.	0.5	0
351	Title is missing!. , 2020, 16, e1007756.		0
352	Title is missing!. , 2020, 16, e1007756.		0
353	Title is missing!. , 2020, 16, e1007756.		0
354	Title is missing!. , 2020, 16, e1007756.		0
355	Title is missing!. , 2020, 16, e1007756.		0
356	Title is missing!. , 2020, 16, e1007756.		0